請問三角函式裡的sincostancsc

2021-05-27 22:53:27 字數 3523 閱讀 9448

1樓:匿名使用者

對應的是:正弦 餘弦 正切 餘割 正割 餘切

2樓:匿名使用者

正弦,餘弦,正切,餘割,正割,餘切。

求三角函式sin,cos,tan,cot,sec和csc的英文全稱。

3樓:化化墨跡

正弦:sine

餘弦:cosine

正切:tangent

餘切:cotangent

正割:secant

餘割:cosecant

三角函式中:tan ,sin,cos,cot各表示什麼意思

4樓:匿名使用者

如圖比如以角a為例

sina=對邊:斜邊=bc:ac

cosa=臨邊:斜邊=ab:ac

tana=對邊:臨邊=bc:ab

cota=臨邊:對邊=ab:bc

tan ,sin,cos,cot之間的關係:

倒數關係

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商數關係

tanα=sinα/cosα

cotα=cosα/sinα

平方關係

sinα2+cosα2=1

1+tanα2=secα2

1+cotα2=cscα2

以下關係,函式名不變,符號看象限

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

以下關係,奇變偶不變,符號看象限

sin(90°-α)=cosα

cos(90°-α)=sinα

tan(90°-α)=cotα

cot(90°-α)=tanα

sin(90°+α)=cosα

cos(90°+α)=sinα

tan(90°+α)=-cotα

cot(90°+α)=-tanα

sin(270°-α)=-cosα

cos(270°-α)=-sinα

tan(270°-α)=cotα

cot(270°-α)=tanα

sin(270°+α)=-cosα

cos(270°+α)=sinα

tan(270°+α)=-cotα

cot(270°+α)=-tanα

積化和差公式

sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]

cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]

cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]

sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)]

和差化積公式

sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]

sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]

cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]

cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2]

三倍角公式

sin3α=3sinα-4sinα3

cos3α=4cosα3-3cosα

兩角和與差的三角函式公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)==(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)

5樓:獨自悟道

sin正弦函式

,cos餘弦函式,tan正切函式,cot餘切函式

在直角三角形中,當平面上的三點a、b、c的連線,ab、ac、bc,構成一個直角三角形,其中∠acb為直角。對∠bac而言,對邊(opposite)a=bc、斜邊(hypotenuse)c=ab、鄰邊(adjacent)b=ac,則存在以下關係:

sina=a/c,cosa=b/c,tana=a/b,cota=b/a ,seca=c/b,csca=c/a,

正切函式、餘切函式曾被寫作tg、ctg,現已不用這種寫法。

三角函式是數學中常見的一類關於角度的函式。也可以說以角度為自變數,角度對應任意兩邊的比值為因變數的函式叫三角函式,三角函式將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。

在數學分析中,三角函式也被定義為無窮級數或特定微分方程的解,允許它們的取值擴充套件到任意實數值,甚至是複數值。

常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式sec、餘割函式csc、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。

三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函式為模版,可以定義一類相似的函式,叫做雙曲函式。常見的雙曲函式也被稱為雙曲正弦函式、雙曲餘弦函式等等。

三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是複數值。

6樓:匿名使用者

一切從定義出發

正弦=對邊/斜邊

餘弦=鄰邊/斜邊

正切=對邊/鄰邊

餘切=鄰邊/對邊

sin30°=cos60°=1/2

cos30°=sin60°=√3/2

cos45°=sin45°=√2/2

7樓:淡淡的青

以上四個都是三角函式

通常與度數搭配算出數值

定義圓的半徑為r

若角度為x的角以x軸為始邊 轉動x度到交圓於點psin:正弦 y:r

cos:餘弦 x:r

tan:正切 y:x

cot:餘切 x:y

高數,反三角函式,請問反三角函式和三角函式怎麼進行運算

不要硬算 t arcsin x a 即 sint x a 畫一直角三角形,將一銳角標為 回 t,其對邊標為 x,則斜邊為 a,另一直角邊為 a 2 x 2 於是答 cost a 2 x 2 aln sint cost ln x a 2 x 2 a ln x a 2 x 2 lna 高數中的三角函式的...

三角函式化簡,三角函式,怎麼化簡

cos 4n 1 4 a cos 4n 1 4 a 2cos 4n 1 4 a 4n 1 4 a 2 cos 4n 1 4 a 4n 1 4 a 2 2cos n cos 4 a 4 a 2 2cos n cos 4 a 2cos n cos 4 a 2 cos 4 a cos 4n 1 4 cos...

三角函式問題 20,三角函式問題

f x sinx cosx sinx 3cosx sinx cosx sinx 2 sinx cosx 3 cosx 2 sinx cosx 1 cosx 2 2sinx cosx 3 cosx 2 1 2 cosx 2 sin2x 1 1 cos2x sin2x 2 2 2 2cos2x 2 2s...