1樓:張簡芮美柯劍
設三角形是abc,ab、bc邊上的中點
分別是d、e。
過點d作de'平行於bc交ac於e',則由平行線平分線段定理,有ad:db=ae':e'c,由於d是ab的中點,所以ae'=e'c,即e'與e重合,從而de平行bc,且de等於bc的一半。
2樓:邗友靈暢桐
連結三角形兩邊中點的線段叫做三角形的中位線.三角形中位線的性質定理是:
三角形的中位線平行於三角形的第三邊,且等於第三邊的一半.通過平移,構造平行四邊形
根據判定「一組對邊平行且相等的四邊形是平行四邊形」,平移線段就可以得到一個平行四邊形
在證明三角形中位線定理時,我們可以運用平移的方法.如圖,設d、e分別是△abc邊ab、ac的中點,過點c作cf‖ad交de延長線於點f.
∵∠1=∠2,ae=ce,∠a=∠3,
∴△aed≌△cef.∴ad=cf.
又ad=bd,.
故四邊形bcfd是平行四邊形.
3樓:欽冬靈興歆
簡捷的方法證明
(l)延長de到f,使
,連結cf,由
可得ad
fc.(2)延長de到f,使
,利用對角線互相平分的四邊形是平行四邊形,可得adfc.(3)過點c作
,與de延長線交於f,通過證
可得ad
fc.上面通過三種不同方法得出ad
fc,再由
得bdfc,所以四邊形dbcf是平行四邊形,dfbc,又因de
,所以de.
三角形中位線簡單證明方法 20
4樓:
1.三角形中位線定理的證明,課本採用「同一法」證明的,其基礎是(1)三角形中位線定理與平行線等分線段定理的推論1是互為逆命題的關係.(2)線段的中點是唯一的,過兩點的直線也是唯一的.
定理證明的其它方法:
(1)通過旋轉圖形構造基本圖形——平行四邊形.(2)過三個頂點分別向中位線作垂線.
2.梯形中位線定理的證明,課本採用「化歸」思想,把梯形中位線問題化歸為三角形中位線問題來證明.
定理證明的其它方法:
(1)連結一條對角線 (2)過上底一端作一腰平行線 (3)過一腰中點作另一腰平等線.
5樓:匿名使用者
有**!!!
三角形中位線的4種證明方法。 10
6樓:久伴
方法一:過c作ab的平行線交de的延長線於g點。
∵cg∥ad
∴∠a=∠acg
∵∠aed=∠ceg、ae=ce、∠a=∠acg(用大括號)∴△ade≌△cge (a.s.a)
∴ad=cg(全等三角形對應邊相等)
∵d為ab中點
∴ad=bd
∴bd=cg
又∵bd∥cg
∴bcgd是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)∴dg∥bc且dg=bc
∴de=dg/2=bc/2
∴三角形的中位線定理成立.
方法二:相似法:
∵d是ab中點
∴ad:ab=1:2
∵e是ac中點
∴ae:ac=1:2
又∵∠a=∠a
∴△ade∽△abc
∴ad:ab=ae:ac=de:bc=1:2∠ade=∠b,∠aed=∠c
∴bc=2de,bc∥de
方法三:座標法:
設三角形三點分別為(x1,y1),(x2,y2),(x3,y3)則一條邊長為 :根號(x2-x1)^2+(y2-y1)^2另兩邊中點為((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)
這兩中點距離為:根號((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2
最後化簡時將x3,y3消掉正好中位線長為其對應邊長的一半方法4:
延長de到點g,使eg=de,連線cg
∵點e是ac中點
∴ae=ce
∵ae=ce、∠aed=∠ceg、de=ge∴△ade≌△cge (s.a.s)
∴ad=cg、∠g=∠ade
∵d為ab中點
∴ad=bd
∴bd=cg
∵點d在邊ab上
∴db∥cg
∴bcgd是平行四邊形
∴de=dg/2=bc/2
∴三角形的中位線定理成立[2]
方法五:向量de=da+ae=(ba+ac)/2=bc/2[3]∴de//bc且de=bc/2
三角形中位線的證明方法、老師說有14種……
7樓:匿名使用者
1)把中位線延長一倍,利用全等三角形證中位線長等於第三邊一半,利用平行四邊形性質證平行。
3)先畫出來三個中位線 一共四個三角形 選取任意兩個角上的三角形
根據邊角邊證明全等
。。。。
14種?你老師吹的吧
三角形中位線定理的證明方法
8樓:桂琭穆惜寒
三角形中位線來定理:三源角形中位城平行於第三邊,並且等於它的一半.這個定理的證明方法很多,關鍵在於如何新增輔助線,當一個命題有多種證明方法時,要選用比較簡捷的方法證明
(l)延長de到f,使
,連結cf,由
可得ad
fc.(2)延長de到f,使
,利用對角線互相平分的四邊形是平行四邊形,可得adfc.(3)過點c作
,與de延長線交於f,通過證
可得ad
fc.上面通過三種不同方法得出ad
fc,再由
得bdfc,所以四邊形dbcf是平行四邊形,dfbc,又因de
,所以de
三角形中位線定理的證明的幾種方法
9樓:戈樂心考萌
1.欲證de=bc/2這種線段
抄的倍半問題bai,往往可以將短的線段放大,轉化為du證明兩線段zhi
相等,dao此題可將線段de延長一倍至f,再連fc,把問題轉化為證明四邊形dfcb為平行四邊形。證明:延長de到f使de=ef,聯結fc
∵de是△abc的中位線
∴ae=ec
ad=db
∵∠aed=∠cef
∴△ade≌△fec
∴ad=fc
∴db=fc
∴∠a=∠ecf
∵cf‖ab
∴dbcf是平行四邊形
三角形中位線的證明方法要帶圖
10樓:千分一曉生
已知:如圖,△abc中,d、e,分別是ab、ac中點,求證:de∥bc,且de=1/2bc
證明:延長de至f,使ef=de,連結cf∵ae=ce,∠aed=∠cef,de=fe,∴△ade≌△cfe(sas)
∴∠a=∠acf,ad=cf,
∴ab∥cf,
∵ad=bd,
∴bd=cf,
∴四邊形bcfd是平行四邊形,
∴de∥bc,df=bc,
又∵df=de+ef=2de,
∴de=1/2bc.
11樓:
延長相等,證明平行四邊形
12樓:松煙羽倩
連結三角形兩邊中點的線段叫做三角形的中位線.三角形中位線的性質定理是:
三角形的中位線平行於三角形的第三邊,且等於第三邊的一半.通過平移,構造平行四邊形
根據判定「一組對邊平行且相等的四邊形是平行四邊形」,平移線段就可以得到一個平行四邊形
在證明三角形中位線定理時,我們可以運用平移的方法.如圖,設d、e分別是△abc邊ab、ac的中點,過點c作cf‖ad交de延長線於點f.
∵∠1=∠2,ae=ce,∠a=∠3,
∴△aed≌△cef.∴ad=cf.
又ad=bd,.
故四邊形bcfd是平行四邊形.
三角形中位線定理證明有幾種方法
13樓:漢曼冬樑覓
已知△abc中,d,e分別是ab,ac兩邊中點。
求證de平行且等於1/2bc
法一:過c作ab的平行線交de的延長線於f點。
∵cf∥ad
∴∠a=acf
∵ae=ce、∠aed=∠cef
∴△ade≌△cfe
∴de=ef=df/2、ad=cf
∵ad=bd
∴bd=cf
∴bcfd是平行四邊形
∴df∥bc且df=bc
∴de=bc/2
∴三角形的中位線定理成立.
法二:∵d,e分別是ab,ac兩邊中點
∴ad=ab/2
ae=ac/2
∴ad/ae=ab/ac
又∵∠a=∠a
∴△ade∽△abc
∴de/bc=ad/ab=1/2
∴∠ade=∠abc
∴df∥bc且de=bc/2
三角形中位線證明方法(兩種以上)
14樓:匿名使用者
1.平行於第三邊且至少是另兩邊其中一邊的中點 2.在其中兩邊的中點上
已知三角形 三角形圓圈,三角形除以三角形正方形,三角形 三角形五角星,正方形 圓圈 五角星9 6 求三
三角形除以三角形 正方形,說明正方形 1,任何數字除以本身都等於1三角形 三角形 五角星,所以五角星 0,任何數字減去數字本身等於0正方形 圓圈 五角星 9.6就是1 0 圓圈 9.6所以圓圈 8.6三角形 4.3 由 o,得o 2 由 得 1.由 得 0,有以上三者帶入最後一式 9.6 1 o 9...
三角形按邊可分為三角形三角形,三角形按邊分類可以分為三角形三角形三角形
三角形按邊可分不等邊三角形 等腰三角形 等邊三角形1 不等邊三角形 指專的是三條邊都不相等的三角屬形叫不等邊三角形。2 等腰三角形 指兩邊相等的三角形,相等的兩個邊稱為這個三角形的腰。3 等邊三角 等邊三角形 又稱正三角形 為三邊相等的三角形,其三個內角相等,均為60 它是銳角三角形的一種。等邊三角...
三角形加圓圈等於24,三角形加三角形加三角形等於圓圈,三角形
三角形 24 1 3 6 圓圈 3 6 18 三角形圓形減三角形等於48。那麼三角形是多少?圓形是多少?48,這是簡單的二元一次方程式,和 的結果有很多 1 1時,49 2 2時,23 3 3時,13 4 4時,11 5 5時,8.6。因為等於64,圓形加正方形等於82,三角形加圓形等於48.所以先...