高數曲面積分x y z ds,其中為球面x 2 y 2 z 2 a 2在第一卦限中的部分

2021-04-30 07:43:49 字數 1616 閱讀 8107

1樓:匿名使用者

解題過程如下圖:

積分發展的動力源自實際應用中的需求。實際操作中,有時候可以用粗略的方式進行估算一些未知量,但隨著科技的發展,很多時候需要知道精確的數值。要求簡單幾何形體的面積或體積,可以套用已知的公式。

比如一個長方體狀的游泳池的容積可以用長×寬×高求出。但如果游泳池是卵形、拋物型或更加不規則的形狀,就需要用積分來求出容積。物理學中,常常需要知道一個物理量(比如位移)對另一個物理量(比如力)的累積效果,這時也需要用到積分。

2樓:海闊天空

看似簡單。但是計算有點麻煩。我給你整理了一下。

計算曲面積分 ∫∫(x^2+y^2+z^2)ds,其中 ∑是球面x^2+y^2+z^2=a^2(a>0)

3樓:星光下的守望者

不用那麼麻煩

把曲面公式代入被積函式中

∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4

計算曲面積分 ∫∫(x^2+y^2+z^2)^-0.5ds,其中 ∑是球面x^2+y^2+z^2=a^2(z>0)

4樓:匿名使用者

∫∫(x^2+y^2+z^2)^-0.5ds=∫∫ads

=a*(2πa²)

=2πa³

曲面積分可以用曲面方程化簡被積函式;被積函式為內1,積分結果為曲面面積;球表容面積為4πa²,本題由於z>0,因此只是半個球,所以是2πa²

高數曲面積分 ,設∑是球面x^2+y^2+z^2=a^2,則曲面積分(x+y+z)^2ds=?

5樓:夢色十年

4πa^4。

原式=∫∫

(x²+y²+z²+2xy+2yz+2xz)ds=∫∫(x²+y²+z²)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a ²ds +0+0+0

=a² •4πa²

=4πa^4

注:1、∫∫(x²+y²+z²)ds=∫∫a ²ds (利用曲面積分可將曲面方程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積分的對稱性)

6樓:匿名使用者

^高數曲面積分 ,設∑是球面x^2+y^2+z^2=a^2,則曲面積分(x+y+z)^2ds=?

原式=∫∫(x²+y²+z²+2xy+2yz+2xz)ds=∫∫(x²+y²+z²)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a ²ds +0+0+0

=a² •4πa²

=4πa^4

注:1、∫∫(x²+y²+z²)ds=∫∫a ²ds (利用曲面積分可將曲面方程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積分的對稱性)

計算下列對面積的曲面積分,計算∫∫(x+y+z)ds,s為球面x^2+y^2+z^2=a^2上a>

7樓:匿名使用者

歡迎採納,不要點錯答案哦╮(╯◇╰)╭

歡迎採納,不要點錯答案哦╮(╯◇╰)╭

高數對面積的曲面積分計算,高數,對面積的曲面積分?

其積分域關於xoz面,yoz面對稱,故 2y和3x的曲面積分為0,而積分域投影到xoy面是圓心在原點,半徑為根號3的圓,剩下的你可以自己算了 用高斯公式,補充一個面z 1 分別對x y z求偏導數後轉化為一個三重積分,在減去一個面 高數,對面積的曲面積分?關於這道 高數題,對面積的曲面積分,計算過程...

高數一道關於曲線積分與曲面積分,求詳細解釋

直接利用對稱性即可。環積分 l z 2ds 環積分 l x 回2ds 環積分 答l y 2ds 1 3環積分 l x 2 y 2 z 2 ds 1 3環積分 l a 2ds l是半徑為a的大圓,周長為2pi a 2pi a 3 3。ds是弧微元,曲線l的引數方程表示比較麻煩,這種題基本不用引數方程做...

重積分,曲線積分,曲面積分分別有什麼不同

定積分 二重積分 三重積分以及曲線 曲面積分統稱為黎曼積分,是高等數學研究的重點內容,定積分 二重積分 三重積分以及曲線 曲面積分它們的定義都是經過分割 近似 求和 去極限四步最後歸結為一個特定結構和式的極限值,定義可以用統一形式給出 從以上各種積分的概念形式和計算方法來看,定積分的積分割槽域是線性...