1樓:匿名使用者
<->:這是等價連線詞,p<->q是一個命題,可以取值為真或者取值為假
<=> :是等值關係,p<=>q 說明p和q這兩個命題具有完全相同的真值表
這四個符號分別是:蘊含連線詞,等價連線詞,推理,等值希望能幫助到你
離散數學這兩個符號什麼意思下標到底表示什麼
2樓:zzllrr小樂
這些下標是極大項的編號,依次表示下面等式中的6個極大項
而上面一行等式中,下標是極小項的編號,依次表示上上行的2個極小項
離散數學的部分符號
3樓:孤獨患者°鴼圶
├ 斷定
符(公式在l中可證)
╞ 滿足符(公式在e上有效,公式在e上可滿足)┐ 命題的「非」運算
∧ 命題的「合取」(「與」)運算
∨ 命題的「析取」(「或」,「可兼或」)運算→ 命題的「條件」運算
↔ 命題的「雙條件」運算的
a<=>b 命題a 與b 等價關係
a=>b 命題 a與 b的蘊涵關係
a* 公式a 的對偶公式
wff 合式公式
iff 當且僅當
↑ 命題的「與非」 運算( 「與非門」 )↓ 命題的「或非」運算( 「或非門」 )
□ 模態詞「必然」
◇ 模態詞「可能」
φ 空集
∈ 屬於(∉不屬於)
p(a) 集合a的冪集
|a| 集合a的點數
r^2=r○r [r^n=r^(n-1)○r] 關係r的「複合」
א 阿列夫
⊆ 包含
⊂(或下面加 ≠) 真包含
∪ 集合的並運算
∩ 集合的交運算
- (~) 集合的差運算
〡 限制
[x](右下角r) 集合關於關係r的等價類a/ r 集合a上關於r的商集
[a] 元素a 產生的迴圈群
i (i大寫) 環,理想
z/(n) 模n的同餘類集合
r(r) 關係 r的自反閉包
s(r) 關係 的對稱閉包
cp 命題演繹的定理(cp 規則)
eg 存在推廣規則(存在量詞引入規則)
es 存在量詞特指規則(存在量詞消去規則)ug 全稱推廣規則(全稱量詞引入規則)
us 全稱特指規則(全稱量詞消去規則)
r 關係
r 相容關係
r○s 關係 與關係 的複合
domf 函式 的定義域(前域)
ranf 函式 的值域
f:x→y f是x到y的函式
***(x,y) x,y最大公約數
lcm(x,y) x,y最小公倍數
ah(ha) h 關於a的左(右)陪集
ker(f) 同態對映f的核(或稱 f同態核)[1,n] 1到n的整數集合
d(u,v) 點u與點v間的距離
d(v) 點v的度數
g=(v,e) 點集為v,邊集為e的圖
w(g) 圖g的連通分支數
k(g) 圖g的點連通度
△(g) 圖g的最大點度
a(g) 圖g的鄰接矩陣
p(g) 圖g的可達矩陣
m(g) 圖g的關聯矩陣
c 複數集
n 自然數集(包含0在內)
n* 正自然數集
p 素數集
q 有理數集
r 實數集
z 整數集
set 集範疇
top 拓撲空間範疇
ab 交換群範疇
grp 群範疇
mon 單元半群範疇
ring 有單位元的(結合)環範疇
rng 環範疇
crng 交換環範疇
r-mod 環r的左模範疇
mod-r 環r的右模範疇
field 域範疇
poset 偏序集範疇
日暈與彩虹有什麼區別,日暈與彩虹的區別是什麼?
在我們的生活中看見彩虹一般是在下午,雨後剛轉天晴時出現。這時空氣內塵埃少而充滿小水滴,天空的一邊因為仍有雨雲而較暗。那麼,接下來我們一起來天文現象瞭解如何區分日暈與彩虹?日暈是日光通過雲層中的冰晶時,經摺射而形成的光現象,圍繞太陽環形,呈彩色。日暈的出現,往往預示天氣要有一定的變化。日暈是一種比較罕...
窮人與富人有什麼區別,窮人與富人的區別是什麼?
在我們的生活中,存在著貧富差距,在窮人與富人之間,他們真正的差距在 是在具體的財富上嗎?思維,有一個積極向前的思維才是重要的 社會是人與人因為某種聯絡而結成的整體.富人與窮人的區別在於對於前途的規劃,對於機會的把握,超前意識.然而,富人之所以能富是因為窮人,沒有窮人為了生活的打拼而為富人幹活,富人的...
法語中的 quel 與 quelle 的區別是什麼
quel 是陽性的 後面接陽性單數的詞 quelle 是陰性的 後面接陰性單數的詞quel m livre m lis tu quelle f joilie f maison quel是放在陽性的名詞前面 很少放在後面 而quelle是放在陰性的前面 很少放在後面 比如說 quel livre es...