工科大學物理與高中物理學習上有什麼不同

2021-03-27 13:19:28 字數 5447 閱讀 7510

1樓:憤想事成

大學的物理不同的部分有不同的特點,知道難點,著重擊破。高中的物理,偏重做題。

學好大學物理的方法:

學好必要的物理知識,為今後的學習和工作打下堅實的物理基礎。

通過該課程的學習培養科學的思維方法及分析問題解決問題的能力。

不同部分內容具有不同的知識特點,同時每一部分也有一些學習難點,學生在學習過程中應針對不同的知識特點、難點採用有效的學習方法。

各部分特點:熱學部分:該部分主要是從微觀和巨集觀的角度闡述熱力學系統的熱運動規律,微觀理論解釋熱運動的本質,巨集觀理論描述系統狀態變化的規律,兩部分彼此聯絡、互相補充。

力學部分:該部分以牛頓運動定律為主線,各部分之間聯絡密切,強調向量的概念、微積分方法在力學中的運用。如由牛頓運動定律可推出動量定理、功能原理、角動量定理等,藉助於對質點的研究方法可對剛體進行研究,質點、剛體的角動量。

波動光學部分:該部分主要是從光的波動性出發闡述光的干涉、衍射、偏振等現象的基本規律。

多去實驗室,做好相應的實驗。

2樓:匿名使用者

基本上沒什麼不同,唯一的不同就是大學物理需要你對物理理論和基本概念理解的更加透徹,也就是解題的時候要求你知道為什麼這麼解題列方程而不那樣立方程,也就是我們常講的:知其所以然,而高中更加傾向於知其然,大學物理要你知道所以然,也就是更深更廣更一般。

學習方法而言,先吃透基本概念和基本定理,對於基本模型要熟練掌握,做題時思路要一般化而不要像高中時候的可以取特殊狀態什麼的,這樣有助於你物理能力的提高,還有就是要注重實驗,注意嚴謹性。

以上全是個人感覺,首先宣告:我沒學過大學物理,呵呵。只是如果我要學大學物理,上面就是我的學習思路

3樓:匿名使用者

其實是有很大不同的。建議你去看看全國高中物理競賽的教程,這個應該是差不多大學物理的難度,可以作為大學和高中的銜接,或者普通物理學也可以看看

大學物理與高中物理最大區別是什麼?哪個更難

4樓:匿名使用者

中國的教育以脫節為特點.如果說你高中物理學的不好,不會特別影響大學物理.但是大學物理確實是高中物理在各個方面的延伸.

不同的專業對於物理的能力要求是不一樣的.高中的物理在教學方面還是不夠嚴謹的,但是不能夠說錯誤,因為都是特殊情況.大學的物理學是真正一般的物理學,現象也從最一般開始,這主要是因為數學工具的應用.

這也更加符合物理學的發展規律.

對於一般的工科專業:

真正的物理課程只有一門,那就是《大學物理》,一般情況下會在一年內學完.涵蓋的面積比較廣泛,但是不深入,可以說就是高中的基本知識的延伸,但是角度不同,不能再用高中那種特殊的眼光去分析問題,因為問題在這裡變得更加一般。主要的數學工具就是微積分。

高等數學並不等於微積分,但微積分是主體。如果你只用學習《大學物理》,只要高等數學不是很差,有一點物理的思想就可以了。畢竟《大學物理》中的東西還是比較淺顯的,很多東西不會去深究,只是一般的概念普及。

(樓上把大學物理說成是計算就很欠妥了)

如果你的專業是物理方向的,那麼你會面對很多課程,主要的有幾門:

力學:就是我們所說的四大力學中的經典力學,也可以說是以牛頓理論為基礎的力學學科。力學涵蓋的東西也是比較多的,除了我們熟知的質點運動學、動力學,還有質點系的運動學、動力學,在這中間你會接觸到一些新的概念,位移、向量疊加都是常見的。

要特別注意物理模型的微積分意義,對於參考系也會有更為深入的討論,你會知道慣性系、非慣性系、伽利略變換等。還有剛體力學(這是新東西),牽扯到角動量、轉動慣量等新的物理量。能量、動量的相關定理(包括質點的能量、動量,剛體的旋轉動量、能量),波、振動的描述和能量,流體力學,還有一點材料力學,如剪下、拉伸、扭轉。

最後有一些關於相對論的簡介,洛侖茲變換等。

電磁學:

電磁學顧名思義是普通物理中的很重要的一門學科,它主要是研究物質的電磁性質。像庫侖定律這樣的定律已經很熟悉了,但是在這裡你會看到新的表述形式,會以更加基本的量來表示。其中會有對於電荷的更深入的討論,向高斯定理這樣的定理是很重要的,可以說是電學部分的基礎,進而你會瞭解到,高斯定理不單單是物理定理,是一種數學的抽象。

掌握這個模型會讓你受益終身。電學方面還有電介質的電學性質,又會接觸到一些新概念。除此之外還有電路方面的知識,比較起《電路》課程相當淺顯了,主要是基爾霍夫電路定理,這也是以後的電路知識的基礎。

磁學方面的學習可以類比電學,其中有像畢奧-薩法爾定理,安培環路定理,都可以類比高斯定理進行學習。還有磁介質磁學。還有電磁感應方面的知識,和高中的沒有太大出入,但是模型要完整的多,也更一般。

光學:光學在高中當中學的可能是比較少的,有一般也是幾何光學。而物理專業的光學相比較而言是比較廣泛的,有波動光學,幾何光學,光學儀器,光的偏振(比高中要深入得多),量子光學等,貫穿著整個光學的發展。有的東西會比較新,以前也沒有聽說過,像菲涅爾半波帶,光學儀器中的費馬原理等,都需要耐心去掌握。

光學主要的特點就是知識碎,公式多,但是理解起來並不難。

熱學:熱學可以說是普通物理漸漸從巨集觀轉向微觀的一個轉折點,但是普通物理學中的熱學(不是熱力學統計物理)。主要是研究熱現象,而非本質,很多理論和公式只能夠解釋現象,但對於本質來講並不完全正確。熱學研究的是一種體系(主要是平衡體系),一種大量的微觀粒子參與的行為。

這就需要概率統計作為其數學工具。熱學中的基礎就是理想氣體的狀態方程,還有熱力學第一定律,第二定律,熱力學系統的表述,到後面還有像輸運,麥克斯韋速度(速率)分佈、克勞修斯不等式等重要的知識,分別涵蓋在各個章節中。熱學的難點在於不好建立模型,因為比較難想象,而且同樣公式多,知識碎。

但所幸的是和高中的知識幾乎沒什麼聯絡(有也是在前面的皮毛部分)。

原子物理學(近代物理):

原子物理學是物理專業課程開始告別普通物理的開始,因為真正的把研究物件從巨集觀轉向微觀。同樣是沿著物理學的發展歷程,你可以看到很多種關於解釋原子尺度的粒子行為的物理理論。其中像很多很酷的理論:

玻爾的原子模型、薛定諤方程、德布洛意波、光電效應、能級、能譜、核物理等接近前沿理論的知識。當然,有些東西是錯誤的,但是也同樣為後來的量子力學的誕生奠定了基礎。在學習原子物理學的時候,或許更加應該帶著問題,因為上面提到的一些理論與實驗,都是經典物理向相對論、量子力學過渡那一個時間段提出的,有很大的啟發性,也可以幫助你找到物理學的方向。

其中,量子力學導論部分的知識是重點(楊福家版)。

除此之外,你還會在高年級接觸到電動力學、熱力學統計物理、量子力學、固體物理等比較深的科目了。但如果你在大

一、大二打好基礎,這些科目也不會特別費勁。(這些科目的知識在工科的《大學物理》中都十分淺顯,有的也不會找到)

一般都是大學難

大學物理與高中物理最大區別是什麼?

5樓:手機使用者

中國的教育以脫節為特點.如果說你高中物理學的不好,不會

特別影響大學物理.但是大學物理確實是高中物理在各個方面的延伸.不同的專業對於物理的能力要求是不一樣的.

高中的物理在教學方面還是不夠嚴謹的,但是不能夠說錯誤,因為都是特殊情況.大學的物理學是真正一般的物理學,現象也從最一般開始,這主要是因為數學工具的應用.這也更加符合物理學的發展規律.

對於一般的工科專業:

真正的物理課程只有一門,那就是《大學物理》,一般情況下會在一年內學完.涵蓋的面積比較廣泛,但是不深入,可以說就是高中的基本知識的延伸,但是角度不同,不能再用高中那種特殊的眼光去分析問題,因為問題在這裡變得更加一般。主要的數學工具就是微積分。

高等數學並不等於微積分,但微積分是主體。如果你只用學習《大學物理》,只要高等數學不是很差,有一點物理的思想就可以了。畢竟《大學物理》中的東西還是比較淺顯的,很多東西不會去深究,只是一般的概念普及。

(樓上把大學物理說成是計算就很欠妥了)

如果你的專業是物理方向的,那麼你會面對很多課程,主要的有幾門:

力學:就是我們所說的四大力學中的經典力學,也可以說是以牛頓理論為基礎的力學學科。力學涵蓋的東西也是比較多的,除了我們熟知的質點運動學、動力學,還有質點系的運動學、動力學,在這中間你會接觸到一些新的概念,位移、向量疊加都是常見的。

要特別注意物理模型的微積分意義,對於參考系也會有更為深入的討論,你會知道慣性系、非慣性系、伽利略變換等。還有剛體力學(這是新東西),牽扯到角動量、轉動慣量等新的物理量。能量、動量的相關定理(包括質點的能量、動量,剛體的旋轉動量、能量),波、振動的描述和能量,流體力學,還有一點材料力學,如剪下、拉伸、扭轉。

最後有一些關於相對論的簡介,洛侖茲變換等。

電磁學:

電磁學顧名思義是普通物理中的很重要的一門學科,它主要是研究物質的電磁性質。像庫侖定律這樣的定律已經很熟悉了,但是在這裡你會看到新的表述形式,會以更加基本的量來表示。其中會有對於電荷的更深入的討論,向高斯定理這樣的定理是很重要的,可以說是電學部分的基礎,進而你會瞭解到,高斯定理不單單是物理定理,是一種數學的抽象。

掌握這個模型會讓你受益終身。電學方面還有電介質的電學性質,又會接觸到一些新概念。除此之外還有電路方面的知識,比較起《電路》課程相當淺顯了,主要是基爾霍夫電路定理,這也是以後的電路知識的基礎。

磁學方面的學習可以類比電學,其中有像畢奧-薩法爾定理,安培環路定理,都可以類比高斯定理進行學習。還有磁介質磁學。還有電磁感應方面的知識,和高中的沒有太大出入,但是模型要完整的多,也更一般。

光學:光學在高中當中學的可能是比較少的,有一般也是幾何光學。而物理專業的光學相比較而言是比較廣泛的,有波動光學,幾何光學,光學儀器,光的偏振(比高中要深入得多),量子光學等,貫穿著整個光學的發展。有的東西會比較新,以前也沒有聽說過,像菲涅爾半波帶,光學儀器中的費馬原理等,都需要耐心去掌握。

光學主要的特點就是知識碎,公式多,但是理解起來並不難。

熱學:熱學可以說是普通物理漸漸從巨集觀轉向微觀的一個轉折點,但是普通物理學中的熱學(不是熱力學統計物理)。主要是研究熱現象,而非本質,很多理論和公式只能夠解釋現象,但對於本質來講並不完全正確。熱學研究的是一種體系(主要是平衡體系),一種大量的微觀粒子參與的行為。

這就需要概率統計作為其數學工具。熱學中的基礎就是理想氣體的狀態方程,還有熱力學第一定律,第二定律,熱力學系統的表述,到後面還有像輸運,麥克斯韋速度(速率)分佈、克勞修斯不等式等重要的知識,分別涵蓋在各個章節中。熱學的難點在於不好建立模型,因為比較難想象,而且同樣公式多,知識碎。

但所幸的是和高中的知識幾乎沒什麼聯絡(有也是在前面的皮毛部分)。

原子物理學(近代物理):

原子物理學是物理專業課程開始告別普通物理的開始,因為真正的把研究物件從巨集觀轉向微觀。同樣是沿著物理學的發展歷程,你可以看到很多種關於解釋原子尺度的粒子行為的物理理論。其中像很多很酷的理論:

玻爾的原子模型、薛定諤方程、德布洛意波、光電效應、能級、能譜、核物理等接近前沿理論的知識。當然,有些東西是錯誤的,但是也同樣為後來的量子力學的誕生奠定了基礎。在學習原子物理學的時候,或許更加應該帶著問題,因為上面提到的一些理論與實驗,都是經典物理向相對論、量子力學過渡那一個時間段提出的,有很大的啟發性,也可以幫助你找到物理學的方向。

其中,量子力學導論部分的知識是重點(楊福家版)。

除此之外,你還會在高年級接觸到電動力學、熱力學統計物理、量子力學、固體物理等比較深的科目了。但如果你在大

一、大二打好基礎,這些科目也不會特別費勁。(這些科目的知識在工科的《大學物理》中都十分淺顯,有的也不會找到)

一般都是大學難

高中物理學的內容有哪些 高中物理學習哪些知識內容?

高中物理學的內容有如下 一 運動學。二 力學。三 牛頓運動定律。四 共點力平衡。五 平拋運動。六 圓周運動。七 天體運動。八 功和能。九 動量。十 動量守恆。十。一 恆定電流。十。二 磁場。十。三 電磁感應。十。四 交變電流。十。五 振動和波。十。六 光學。十。七 近代物理。人教版高中物理必修一目錄...

高考學霸數學與物理學習上有哪些不同

都是吃透原理殺天下題的科目,至少我是這樣 兩個差不多吧,最簡單也最難的就是理解公式,該用的時候用出來。可能數學會更加靈活一點,比如新增輔助線,還有一些運算的技巧。物理一般來說比較簡單粗暴,套公式就可以,什麼正弦餘弦反三角很少碰到 數學和物理的門道,看這些學霸怎麼說 學霸復中的學霸與學霸還是有不制同的...

如何提高高中物理學習效率,高中物理怎樣才能學好

如何提高高中物理學習的幾點建議 1 課堂聽講是關鍵 課堂教學是學生掌握知識的主要途徑,聽課要抓住以下環節 知識是怎樣引出的。知識內容是什麼。所學知識概念怎樣理解。所學知識在生活 生產中有什麼應用。2 讀好物理書,抓好基礎。我們所學知識基本上都來自課本,所以通過讀書才能對知識的來龍去脈有全面的瞭解。讀...