導函式在X0處連續,和導數在x0處的存在有什麼區別

2021-03-08 21:12:28 字數 2483 閱讀 8627

1樓:

導數的存在和連續在條件上有什麼區別?你指的是導數存在與導數連續的區別?那版與權「函式在一點有函式值」和「函式在一點連續」的區別是一樣的你舉的例子是f(x)=

0,x=0

x^a×sin(1/x),x≠0

在x=0處,[f(x)-f(0)]/x=x^(a-1)×sin(1/x),當x→0時,此極限要存在,必須是a-1>0,即a>1,得f'(0)=0

這時候,在x≠0處,f'(x)=ax^(a-1)sin(1/x)-x^(a-2)cos(1/x),很明顯如果只有條件a>1,lim(x→0) f'(x) = -lim(x→0) x^(a-2)cos(1/x)不一定存在,所以f'(x)在x=0處不一定連續.

如果f'(x)在x=0處連續,則lim(x→0) f'(x) = -lim(x→0) x^(a-2)cos(1/x)=0,所以a-2>0,得a>2

2樓:匿名使用者

導數定義為:當自變數的增量趨於零時,因變數的增量與自變數的增量之商的專極限。

在一個函屬數存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。 連續不一定可導。(如一條曲線x=1,)不連續的函式一定不可導。

導數:又稱變化率(切線的斜率),也就是要求曲線在某點有切線,沒有切線, 這這點的導數就不存在

3樓:匿名使用者

我個人感覺導數的存在和導數的連續是等價的

導函式在一點處連續,則導數在這點處存在麼,如f '(x) 在x=0處連續,則f '(0)存在麼?

4樓:bluesky黑影

連續不一定可導,可導必連續,如y=丨x丨在x=0處連續,但不可導

f'(x)在x=0處連續,那麼根據連續的定義知道,f'(0)存在

f(x)在x=0處可導,則f'(x)在x=0處一定連續嗎

5樓:

考研數學上遇到類似的問題,現在明白了。

第一句:f(x)在x=0處可導,由導數定義知,f'+(0)=f'-(0),也就是在x=0處的左右導數相等。

第二句:f'(x)在x=0處連續,由連續的定義知,f'+(0)=f'-(0)=f'(0),相當於把導函式看成普通函式,在x=0處的左極限=右極限=這個點的函式值。

這兩者都是導函式的左右極限相等,但是前者不管導函式在x=0處存不存在,後者是導函式在x=0處一定存在且與左右極限相等。

通常用分段函式舉反例:

f(x)=x²sin(1/x) x≠0 ,

f(x)=0 x=0,

這樣,f(x)在x=0處連續,且f(x)在x=0處的導數為 f'(0)=0,而導函式f'(x)=2xsin(1/x)-cos(1/x) 中,f'+(0)與f'-(0)不存在,所以f(x)在x=0處可導。但是f'(x)在x=0處不連續。

綜上:f(x)在x=0處可導,f'(x)在x=0處不一定連續。

6樓:匿名使用者

不一定經典反例f(x)=x^2sin(1/x),定義f(0)=0。

f'(0)=0,

當x趨於0時

f'(x)=2xsin(1/x)-cos(1/x)極限不存在。

7樓:匿名使用者

大佬們,是不是這種意思,導函式連續要求,f'(0-)=f'(0+)=f'(0)(f'(0)也就是導函式在這點的定義),而函式在此點可導,只要求f'(0-)=f'(0+)即可,因此二者並無聯絡。

8樓:匿名使用者

對,對---------可導一定連續。

9樓:匿名使用者

是的,可導一定連續,連續不一定可導。

10樓:哈哈哈

f(x)可導,代表的是f(x)連續,如果要f'(x)連續,則應該有「f'(x)可導」這個條件,f'(x)可導即f(x)有二階導函式。

11樓:輕塵雨隨

這個問題我在考研的數學裡面看到了,也很疑惑,有個題目是這樣的當x≠0時f(x)=x^(4/3)sin(1/x),當x=0時,f(x)=0,答案說此f(x)在x=0處可導,然後另一個一樣的題說此f'(x)在x=0處不連續,我就納悶兒了,f'(x)在x=0處可導不就是存在f'(0)嗎?而f'(0)存在的條件不就是左右極限f'(0-)=f'(0+)嗎?既然f'(0-)=f'(0+)了不就是f'(x)在x=0上連續了嗎?

樓上的人好像沒踩到你的點,樓主現在會了嗎?能給我解釋下下嗎??我超疑惑。。。

函式f(x)在x=x0處左右導數均存在,則f(x)在x=x0處連續,為什麼。

12樓:

左導數存在左連續,右導數存在右連續

左右導數均存在,左右均連續,所以 f(x)在x=x0處連續

13樓:betsy如夢令

f(x)在x0處連續的充分必要條件是f(x)在x0既左連續又右連續,這個是連續的定義

函式f X 在x0可導,且在x0處取得極值,那麼f x0 0的什麼條件

在 若copy a 則b 中,b 是 a 的必要條件,a 是 b 的充分條件。因為 函式f x 在x0可導,且在x0處取得極值,則有f x0 0。fermat定理 所以,f x0 0 應該是 函式f x 在x0可導,且在x0處取得極值 的必要條件。首先你要bai明白什麼是充du分條件,必要條件和充z...

函式fx在點x0處可導是fx在點x0處可微的

由函式在某點可導,根據定義 有k f x0 lim x 0 f x x f x x 1由1得,y k x o x x 0 即是可微的定義.故可微與可導等價.函式f x 在點x0可導是f x 在點x0可微的什麼條件 充分必要條件 對於一元函式f x 而言,可導和可微是等價的,互為充分必要條件。函式f ...

若函式fx在點X0處可導,則fx在點X0處A

c.連續但未必可導.如f x x,f x x x,不可導 函式f x 在點x0處可導,則 f x 在點x0處 c.連續但未必可導.如f x x,f x x x,不可導 c,x和絕對值x就可以說明 c。例如函式f x x x0,在x0處f x 可導,而 f x 不可導。望採納。如果函式f x 在點x0...