概率公式中c是什麼,概率中的C是什麼?怎麼計算?

2021-04-08 13:36:45 字數 6091 閱讀 7961

1樓:關鍵他是我孫子

c表示組合數。

c(n,m) 表示n選m的組合數,其中n是下標 , m是上標 (c上面m,下面n)。

nck是一個整體,是n個元素中,取k個元素的取法的個數,也叫n個元素中,取k

個k組合數,(c代表組合),演算法是:

nck=n!/k!(n-k)!=n(n-1)……(n-k+1)/k!

等於從n開始連續遞減的m個自然數的積除以從1開始連續遞增的m個自然數的積。

該概率公式的推導過程:

在這個證明中,表示n次實驗中,成功的k次,取法的個數。

每次取定後,k次成功,n-k次失敗,概率用乘法p=p^k*(1-p)^(n-k)

總共有nck個取法,即nck個情況,概率用加法,每個情況的概率又相同,所以

成為nck倍。

2樓:狼道刀

c(n,m) ----------n是下標 , m是上標 (c上面m,下面n),c(n,m) 表示 n選m的組合數,等於從n開始連續遞減的m個自然數的積除以從1開始連續遞增的m個自然數的積。

例子:c(8,3)=8*7*6/(1*2*3) =56

分子是從8開始連續遞減的3個自然數的積

分母是從1開始連續遞增的3個自然數的積

擴充套件資料

1、組合定義

組合(combination),數學的重要概念之一。從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重複地選取m個元素的一個組合。

2、組合總數

組合總數(total number of combinations)是一個正整數,指從n個不同元素裡每次取出0個,1個,2個,…,n個不同元素的所有組合數的總和。

3、重複組合

重複組合(combination with repetiton)是一種特殊的組合。從n個不同元素中可重複地選取m個元素。不管其順序合成一組,稱為從n個元素中取m個元素的可重複組合。

當且僅當所取的元素相同,且同一元素所取的次數相同,則兩個重複組合相同。

3樓:同綠蘭天素

名稱:組合

意義:從n個不同的物體裡面選出m個物體的選擇方法(排列的話就是再將這m個物體排序)

計算:cm,n=n!/m!(n-m)!

證明:對於一個物體,有n個選擇;第二個物體,有n-1個選擇……第m個物體,有n-m個選擇。共有n*n-1*n-2*……n-m

,這是排列,組合不要求對抽出的樣本進行排序,因此除以m!,於是得到上式。

4樓:清茶半盞

c表示組合數。c(n,m) 表示 n選m的組合數,等於從n開始連續遞減的m個自然數的積除以從1開始連續遞增的m個自然數的積。

從m個不同元素中,任取n(n≤m)個元素併成一組,叫做從m個不同元素中取出n個元素的一個組合;從m個不同元素中取出n(n≤m)個元素的所有組合的個數,叫做從m個不同元素中取出n個元素的組合數。

5樓:魯禮常胭

如果m在下面,n在上面,意思就是在m個元素中選出n個元素有多少種組合(無順序,即a,b,c和c,b,a算一種)

6樓:卓新蘭憑香

c表示組合數.

下標表示一共有幾個東西,上標表示從中選幾個.

如cm(n)表示從n個當中選擇m的組合.

公式為n(n-1)(n-2)…………(n-m+1)/m!

7樓:匿名使用者

nck是一個整體,是n個元素中,取k個元素的取法的個數,也叫n個元素中,取k

個的組合數,(c代表組合),演算法是:

nck=n!/k!(n-k)!=n(n-1)……(n-k+1)/k!

在這個證明中,表示n次實驗中,成功的k次,取法的個數。

每次取定後,k次成功,n-k次失敗,概率用乘法p=p^k*(1-p)^(n-k)

總共有nck個取法,即nck個情況,概率用加法,每個情況的概率又相同,所以

成為nck倍。

概率中的c是什麼?怎麼計算?

8樓:小小芝麻大大夢

c表示組合數。

組合,數學的重要概念之一。從n個不同元素中每次取出m個不同元素(回0≤

答m≤n),不管其順序合成一組,稱為從n個元素中不重複地選取m個元素的一個組合。所有這樣的組合的總數稱為組合數,這個組合數的計算公式為

擴充套件資料

在重複組合中,從n個不同元素中可重複地選取m個元素。不管其順序合成一組,稱為從n個元素中取m個元素的可重複組合。當且僅當所取的元素相同,且同一元素所取的次數相同,則兩個重複組合相同。

排列組合計算方法如下:

排列a(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)

組合c(n,m)=p(n,m)/p(m,m) =n!/m!(n-m)!;

例如:a(4,2)=4!/2!=4*3=12

c(4,2)=4!/(2!*2!)=4*3/(2*1)=6

9樓:關鍵他是我孫子

c表示組合數。

c(n,m) 表示n選m的組合數,其中n是下標 , m是上標 (c上面m,下面n)。

nck是一個整體,是n個元素版中,取k個元素的取法的個權數,也叫n個元素中,取k

個k組合數,(c代表組合),演算法是:

nck=n!/k!(n-k)!=n(n-1)……(n-k+1)/k!

等於從n開始連續遞減的m個自然數的積除以從1開始連續遞增的m個自然數的積。

該概率公式的推導過程:

在這個證明中,表示n次實驗中,成功的k次,取法的個數。

每次取定後,k次成功,n-k次失敗,概率用乘法p=p^k*(1-p)^(n-k)

總共有nck個取法,即nck個情況,概率用加法,每個情況的概率又相同,所以

成為nck倍。

10樓:狼道刀

c(n,m) ----------n是下標 , m是上標 (c上面m,下面n),c(n,m) 表示 n選m的組合數,等於從n開始

連續遞減的m個自內然數的積除以從容1開始連續遞增的m個自然數的積。

例子:c(8,3)=8*7*6/(1*2*3) =56

分子是從8開始連續遞減的3個自然數的積

分母是從1開始連續遞增的3個自然數的積

擴充套件資料

1、組合定義

組合(combination),數學的重要概念之一。從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重複地選取m個元素的一個組合。

2、組合總數

組合總數(total number of combinations)是一個正整數,指從n個不同元素裡每次取出0個,1個,2個,…,n個不同元素的所有組合數的總和。

3、重複組合

重複組合(combination with repetiton)是一種特殊的組合。從n個不同元素中可重複地選取m個元素。不管其順序合成一組,稱為從n個元素中取m個元素的可重複組合。

當且僅當所取的元素相同,且同一元素所取的次數相同,則兩個重複組合相同。

11樓:複合式歲月

c表示組合數。

c(m,n)=p(m,n)/n

概率,又稱或然率、機會率或機率。表示隨機事件發專生可能性大小的量,是屬事件本身所固有的不隨人的主觀意願而改變的一種屬性。可能性,是數學概率論的基本概念,是一個在0到1之間的實數,是對隨機事件發生的可能性的度量。

概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數表示一個事件發生的可能性大小。越接近1,該事件更可能發生;越接近0,則該事件更不可能發生,其是客觀論證,而非主觀驗證。如某人有百分之多少的把握能通過這次考試,某件事發生的可能性是多少,這些都是概率的例項。

基本資訊

中文名:概率

英文名:probability

學科:數學

領域:概率論

別稱:或然率、機率、機會率、可能性

概率的古典定義:

如果一個試驗滿足兩條:

(1)試驗只有有限個基本結果;

(2)試驗的每個基本結果出現的可能性是一樣的。

這樣的試驗,成為古典試驗。

對於古典試驗中的事件a,它的概率定義為:

p(a)=m/n,n表示該試驗中所有可能出現的基本結果的總數目。m表示事件a包含的試驗基本結果數。這種定義概率的方法稱為概率的古典定義。

12樓:匿名使用者

nck是抄一個整體,是n個元素襲

中,取k個元素的取法的個bai

數,也叫n個元du素中,取k

個的組合數,(zhic代表組合)dao,演算法是:

nck=n!/k!(n-k)!=n(n-1)……(n-k+1)/k!

在這個證明中,表示n次實驗中,成功的k次,取法的個數。

每次取定後,k次成功,n-k次失敗,概率用乘法p=p^k*(1-p)^(n-k)

總共有nck個取法,即nck個情況,概率用加法,每個情況的概率又相同,所以

成為nck倍。

13樓:匿名使用者

古典概型和概率計算公式

14樓:清茶半盞

c表示組合數。c(n,m) 表示 n選m的組合數,等於從n開始連續遞版減的m個自然數的積

權除以從1開始連續遞增的m個自然數的積。

從m個不同元素中,任取n(n≤m)個元素併成一組,叫做從m個不同元素中取出n個元素的一個組合;從m個不同元素中取出n(n≤m)個元素的所有組合的個數,叫做從m個不同元素中取出n個元素的組合數。

15樓:車掛怒感嘆詞

[最佳答案] c(m,n)=p(m,n)/n概率copy,又稱或然率、機會率或機率。表示隨機事件發生可能性大小的量,是... 對於古典試驗中的事件a,它的概率定義為:

p(a)=m/n,n表示該試驗中所有可...

概率中的c是什麼?怎麼計算

16樓:喵喵喵

c表示組bai合數。

從n個不同元素du中,zhi任取daom(m≤n)個元素併成的一組,叫專

做從n個不同元素中任屬取m個元素的一個組合。

從n個不同元素中任取m(m≤n)個元素的所有組合的總數,叫做從n個不同元素中任取m個元素的組合數,用符號

表示。擴充套件資料

組合與排列的區別在於:每一個組合中的各元素是沒有順序的。無論這 些元素怎樣排列,都只當作一種組合方式。

所以在計算組合數的時候,只要 分步,就意味有次序。取 n 次,n 件物品的 n!種排列方式都會被當作不同 選法,該選法就重複計了 n!

次。比如 10 個球中任取三個球,取法應該是 c(10,3),但如果先從 10 箇中取一個,得 c(10,1),再從 9 箇中取一個 得 c(9,1),再從 8 箇中取一個得 c(8,1),再相乘結果成了 p(10,3), 結果增大了 3!倍。

17樓:狼道刀

c(n,m) ----------n是下標

bai , m是上標 (c上面m,下面n),c(n,m) 表示du n選m的組合數,等於zhi從n開始連續

dao遞減的m個自

版然權數的積除以從1開始連續遞增的m個自然數的積。

例子:c(8,3)=8*7*6/(1*2*3) =56

分子是從8開始連續遞減的3個自然數的積

分母是從1開始連續遞增的3個自然數的積

擴充套件資料

1、組合定義

組合(combination),數學的重要概念之一。從n個不同元素中每次取出m個不同元素(0≤m≤n),不管其順序合成一組,稱為從n個元素中不重複地選取m個元素的一個組合。

2、組合總數

組合總數(total number of combinations)是一個正整數,指從n個不同元素裡每次取出0個,1個,2個,…,n個不同元素的所有組合數的總和。

3、重複組合

重複組合(combination with repetiton)是一種特殊的組合。從n個不同元素中可重複地選取m個元素。不管其順序合成一組,稱為從n個元素中取m個元素的可重複組合。

當且僅當所取的元素相同,且同一元素所取的次數相同,則兩個重複組合相同。

如何計算概率,公式是什麼,計算概率的公式An,m和Cn,m如何計算

性質1.p 0.性質2.有限可加性copy 當n個事件a1,an兩兩互不相容時 p a1 an p a1 p an 性質3.對於任意一個事件a p a 1 p 非a 性質4.當事件a,b滿足a包含於b時 p b a p b p a p a p b 性質5.對於任意一個事件a,p a 1.性質6.對任...

我們老師是什麼意思啊,概率論中的C是什麼意思?有誰能詳細說明嗎?我給忘了。我們老師出了個題,也有答案,但忘了是什麼意思了

或許老師是嚇唬你們 不然意思就是要扣你們的平時分,因為考試成績一般都是平時分加考試分的。老師總是說話不算話,老胡說八道。我們老師也一樣,也是剛開校,說不會動我們班任何人,我們也都大了,可現在還是一樣往死了打!老師為你們好啊!既然有機會在學校就珍惜!你們老師挺陰險的啊 先說考勤無所謂,讓你們麻痺,最後...

條件概率公式中的P AB 怎麼求

p ab p a p b a p b p a b 條件概率表示為 p a b 讀作 在b的條件下a的概率 條件概率可以用決策樹進行計算。條件概率的謬論是假設 p a b 大致等於 p b a 數學家john allen paulos 在他的 數學盲 一書中指出醫生 律師以及其他受過很好教育的非統計學...