上連續,且fafb,證明,存在區間滿足ba2,且f

2021-03-03 21:21:22 字數 3498 閱讀 8574

1樓:風痕雲跡

定義 g(x) = f(x)-f(x+(b-a)/2), a<=x<= a+(b-a)/2.

g(a) = f(a)-f((b+a)/2)g((a+b)/2)= f((b+a)/2)- f(a) = -g(a)

若 g(a)=0, 則來 取 α = a, 結論即源成立。

若 g(a)不=0, 因為g連續,且在區間 [a, a+(b-a)/2] 兩個端點的函式值符號相異。所以區間內必存在 α 使得 g(α)=0, 取 β= α+(b-a)/2, 結論即成立。

設函式f(x)在區間[a,b]上連續,且f(a)b。證明存在ξ∈(a,b),使得f(ξ)=ξ

2樓:

令g(x)=f(x)-x,由題意知g(x)連續g(a)=f(a)-a<0,g(b)=f(b)-b>0∴g(a)g(b)<0

∴根據零點定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得證。

零點定理:

設函式f(x)在[a,b]上連續,且f(a)f(b)<0,則存在ξ∈(a,b),使得f(ξ)=ξ

3樓:匿名使用者

證明:記f(x)=f(x)-x,顯然它在[a,b]上連續且f(a)=f(a)-a<0,f(b)=f(b)-b>0由連續函式介值定理知存在ξ∈(a,b),使得f(ξ)=f(ξ)-ξ=0

即存在ξ∈(a,b),使得f(ξ)=ξ,命題得證。

4樓:匿名使用者

高等數學,課本上好像有證明過程,以前證過,現在忘了!不好意思!

設函式f(x)在[a,b]上連續,且a

5樓:無聊麼逛逛

設f(x)=f(x)-x

f(x)在(a.b)連續

,則f(x)也連續

f(a)=f(a)-a

f(b)=f(b)-b

又a

故f(a)>0,f(b)<0

連續函式的零點定理有存在ξ

版 (a,b)使得f(x)=0

即為結果權

6樓:我不流淚吧

f(x)=f(x)-x,rolla定理

設f(x)在區間[a,b]上連續,且f(a)b,證明在(a,b)內至少有點ξ,使得

7樓:匿名使用者

你好,本題解法如下,希望對你有所幫助,望採納!謝謝。

8樓:匿名使用者

令g(x)=f(x)-x

因為f(x)在[a,b]上連來續自,所bai以g(x)也在[a,b]上連續

g(a)=f(a)-a<0

g(b)=f(b)-b>0

所以根據連續函式介du值定理,存在zhic∈(a,b),使得g(c)=0

即daof(c)-c=0

f(c)=c

數學分析題, 設函式f(x)在[a,b]上連續,在(a,b)上可導且f(a)=f(b),證明:存在§∈(a,b)使得得f(§)+f'(§)= 20

9樓:匿名使用者

函式f(x)上的一點a(§,f(§))的切線斜率為f'(§),過a點作x軸的垂

線交於x軸於b點(§,0),切線交x軸於c點,在rt△abc中,bc=ab/(tan(180-α)=-ab/tan(α)=-f(§)/f'(§),因為函式在 (a,b)內連續,因此必然存在bc=1,此時-f(§)/f'(§)=1,f(§)+f'(§)=0.

10樓:匿名使用者

如果是f(a)=f(b)=0則,可以令f(x)=e^xf(x),用羅中值定值可得答案。

如果上述條件不滿足,則有反例

令f(x)=1,則有,對所有x,f(x)+f'(x)=1+0=1,不可能等於0

11樓:白嘩嘩的大腿

可導函式就是在定義域內,每個值都有導數.可導函式的條件是在定義域內,必須是連續的.可導函式都是連續的,但是連續函式不一定是可導函式.

像樓上說的y=|x|,在x=0上不可導.即使這個函式是連續的,但是lim(x趨向0+)y'=1,lim(x趨向0-)y'=-1,兩個值不相等,所以不是可導函式。

12樓:翱翔千萬裡

在蝳坦曱甴剸一冒雨直上理 平下實下一上理

設函式f(x)在【a,b】上連續,且f(a)=f(b),證明一定存在長度為b-a/2的區間【c,d】屬於【a,b】 5

13樓:匿名使用者

先分析思路 連續 連可不可導都不知道

於是很顯然只能走介值定理版

設g(x)

權=f(x)-f(x+(b-a)/2)

g(a)=f(a)-f((a+b)/2) g((a+b)/2)=f((a+b)/2)-f(b)

g((a+b)/2)g(a)==-^2

高數 設函式f(x)在區間 [ a b ] 上連續 且f(x)>0則方程∫f(t)dt+∫1/f(

14樓:匿名使用者

記方程左邊的函式為g(x),則顯然g(a)<0, g(b)>0. 又有g'(x)=f(x)+1/f(x)>0,即g(x)嚴格單調遞增,因此g(x)=0只有一個根。

設函式f(x)在區間[a,b]上連續,且f(a)b。證明:至少存在一點ξ∈(a,b),使得......高等數學(上)...

15樓:匿名使用者

1,證:設f(x)=f(x)-x 則來f(x)在區間[a,b]上連續,

因為源f(a)=f(a)-a<0 f(b)=f(b)-b>0所以存在一點ξ

∈(a,b),使得f(ξ)=0 即 f(ξ)-ξ=0 f(ξ)=ξ.

2, sinx的原函式是-cosx

證明題,設函式f(x)在[a,b]上連續,(a,b)內可導,且f(a)>a,f(b)

16樓:匿名使用者

(1)令g(x)=f(x)-x,則g(x)在[a,b]上連續∵g(a)=f(a)-a>0,g(b)=f(b)-b<0∴g(x)在[a,b]上滿足零點定理

的條件即存在一點

ξ∈(a,b),使g(ξ)=f(ξ)-ξ=0即f(ξ)=ξ

(2)假設a回據羅爾定理,(a,b)上存在一點η答,使f'(η)=0<1

假設f(a)≠f(b),易證f(x)在[a,b]上滿足拉格朗日中值定理的條件,則存在一點η∈(a,b),使

f'(η)=[f(b)-f(a)]/(b-a)又∵f(a)>a,b>f(b)

∴f(a)+b>f(b)+a

即b-a>f(b)-f(a)

∵b-a>0,兩邊除以b-a,得

f'(η)=[f(b)-f(a)]/(b-a)<1

設函式fx在上連續,且fafb,證明

定義bai g x f x f x b a 2 a x a b a 2.g a f a f b a 2 g a b 2 f b a 2 f a g a 若g a 0,則取 a,結論即成立。du 若g a 不 0,因為g連續,且zhi在區間 a,a b a 2 兩個端dao點的 函式值符號相版異。所權...

設fx在區間上連續,且fa《a,fb

你好,本題解法如下,希望對你有所幫助,望採納 謝謝。令g x f x x 因為f x 在 a,b 上連來續自,所bai以g x 也在 a,b 上連續 g a f a a 0 g b f b b 0 所以根據連續函式介du值定理,存在zhic a,b 使得g c 0 即daof c c 0 f c c...

上連續,且1到100f x dx 0證明存在C 1,100 使得f C 0(詳細過程)

證 設g x f t dt 1到x 因為由定積分性質知 g 1 f t dt 0 1到1 由已知得 g 100 f t dt 0 1到100 因為f x 在 1,100 上連續 g x 在 1,100 上可積 所以 g x 在 1,100 上連續,在 0,100 內可導,滿足羅爾定理條件 所以存在c...