1樓:夢想隊員
定理:如果ab=0,則秩(a)+秩(b)≤n。
證明:將矩陣b的列向量記為bi。∵ab=0,所∴abi=0,∴bi為ax=0的解。
∵ax=0的基礎解系含有n-秩(a)個線性無關的解,∴秩(b)≤n-秩(a),
即秩(a)+秩(b)≤n。
ps:這個結論在證明或者選擇填空中都經常用到,需要記住並應用~
2樓:橋蘭英夙緞
兩種證明方法。
第一種是用分塊矩陣乘法來證明。(不太好書寫,可以見線性代數習題冊答案集);
第二種是線性方程組的解的關係來證明。
因為ab=0,所以b的每一列都是線性方程組ax=0的解。而根據線性方程組理論,ax=0的基礎解系中線性無關的解的個數(或者說解空間的維數)≤
n-r(a)。而b的列向量組是解空間的一部分,所以b的列向量組中的極大線性無關組中的向量個數(就是秩r(b))一定≤基礎解系中線性無關的解的個數,也就是≤
n-r(a),所以r(b)≤
n-r(a),從而r(a)+r(b)<=n。
matlab 計算兩個矩陣相乘
3樓:匿名使用者
.* 表示矩陣與矩陣相乘,滿足線性代數上學的矩陣與矩陣的乘法,*表示矩陣中元素與元素相乘,這兩個矩陣的維數必需相同。
例如:a.*b,那麼a是m行n列的話,b必須也是m行n列。其他的如: 「/ 與 ./ 」 ,「.^ 與 ^ 」的含義都是一樣的。
題目中源**如下:
>> a=[1 3 0.5 1 2; 1/3 1 1/2 1/2 1/2 ; 2 2 1 4 3;1 2 1/4 1 5; 1/2 2 1/3 1/5 1]
>> w=[0.2069 0.069 0.4138 0.2069 0.1034]
>> c1=a.*w
c1為矩陣a和w相乘的結果。由於兩個矩陣維數不同,結果提醒出錯。
兩個矩陣乘積的秩滿足的不等式有哪些
4樓:匿名使用者
1、r(a)≤min(m,n)≤m,n。
2、r(ka+lb)≤r(a)+r(b)。
3、r(ab)≤min(r(a),r(b)) ≤r(a)。
4、r(abc)≥r(ab)+r(bc)-r(b)。
5、r(ac)≥r(a) +r(c) -n上推,令b=in。
6、r(ka+lb)-n≤r(a)+r(b)-n≤r(ab)≤min(r(a),r(b))≤r(a)。
擴充套件資料:m×n矩陣的秩最大為m和n中的較小者。有儘可能大的秩的矩陣被稱為有滿秩,否則矩陣是秩不足的。
矩陣的列秩和行秩總是相等的,因此它們可以簡單地稱作矩陣a的秩。通常表示為rk(a) 或 ranka。
只有零矩陣有秩0,a的秩最大為 min(m,n) f是單射,當且僅當a有秩n(在這種情況下,我們稱 a有「滿列秩」)。
5樓:小樂笑了
行秩 = 列秩 = 秩
r(a) ≤
min(m,n) ≤ m, n
r(a+b) = r(b+a)
r(a-b) = r(b-a)
r(ka + lb) ≤ r(a) + r(b)r(ab) ≤ min(r(a), r(b)) ≤ r(a)r(b)
r(abc) ≥ r(ab) + r(bc) - r(b)frobenius(sylvester)不等式
r(ac) ≥ r(a) + r(c) - n上推,令b=inr(a+b)-n = r(b+a)-n
r(a-b)-n = r(b-a)-n
r(ka+lb)-n ≤ r(a) + r(b) - n ≤ r(ab) ≤ min(r(a), r(b)) ≤ r(a)
r(b)上推
兩個矩陣相乘零矩陣,秩的關係
6樓:
兩種證明方法。
第一種是用分塊矩陣乘法來證明。(不太好書寫,可以見線性代數習題冊答案集);
第二種是線性方程組的解的關係來證明。
因為ab=0,所以b的每一列都是線性方程組ax=0的解。而根據線性方程組理論,ax=0的基礎解系中線性無關的解的個數(或者說解空間的維數)≤ n-r(a)。而b的列向量組是解空間的一部分,所以b的列向量組中的極大線性無關組中的向量個數(就是秩r(b))一定≤基礎解系中線性無關的解的個數,也就是≤ n-r(a),所以r(b)≤ n-r(a),從而r(a)+r(b)<=n。
線性代數 兩個矩陣相乘 秩等於多少
7樓:垢內糯
4 階矩陣 a, r(a)=3=4-1, 則 r(a*)=1;
4 階矩陣 b, r(b)=4, 則 r(b*)=4, 即滿秩;
得 r(a*b*) = r(a*) = 1
兩個矩陣乘積的秩為何能小於兩個中小的那個?
8樓:笑書神俠客
樓主說的應該是r(ab)<=min(r(a),r(b))證明很簡單,但是方法很重要
設ab=c,將矩陣b分塊為b=(b1,b2,,,,,,bs) ,c分塊為c=(c1,c2,,,,,cs)
則ab=(ab1,ab2,,,,,,abs) = (c1,c2,,,,,cs)
即 abi=ci 其中i=1,2,,,,s可知矩陣c的第i個列向量均是由矩陣a的所有列向量線性組合而成,而組合係數即為矩陣b的第i列的各分量。
既然c可以有矩陣a線性表示,即r(c)<=r(a)同理對b進行行分塊也可證明
9樓:他說你妖言惑眾
設ab=c,將矩陣b分塊為b=(b1,b2,...,bs) ,c分塊為c=(c1,c2,...,cs)
則ab=(ab1,ab2,...,abs) = (c1,c2,...,cs)
即 abi=ci 其中i=1,2,.......,s可知矩陣c的第i個列向量均是由矩陣a的所有列向量線性組合而成,而組合係數即為矩陣b的第i列的各分量。
既然c可以有矩陣a線性表示,即r(c)<=r(a)。
同理對b進行行分塊也可證明。
兩個矩陣相乘後的秩和兩個矩陣的秩相乘的結果一樣嗎
10樓:電燈劍客
這個顯然是錯的,考慮兩個n階單位陣相乘
11樓:圭虎貿依絲
定理:如果ab=0,則秩(a)+秩(b)≤n。
證明:將矩陣b的列向量記為bi。∵ab=0,所∴abi=0,∴bi為ax=0的解。
∵ax=0的基礎解系含有n-秩(a)個線性無關的解,∴秩(b)≤n-秩(a),
即秩(a)+秩(b)≤n。
ps:這個結論在證明或者選擇填空中都經常用到,需要記住並應用~
兩個矩陣相乘 它們的秩都知道 怎麼求它們相乘所得矩陣的秩
12樓:匿名使用者
那你只能乘出來再算了,只能告訴你r(ab)<=min(r(a),r(b)),即相乘之後的矩陣的秩要小於等於a,b的秩
兩個矩陣相乘等於零矩陣,已知兩個矩陣相乘等於0,其中一個矩陣已知,怎麼求另一矩陣
任何矩陣乘零矩陣等於零矩陣。1 矩陣的數乘滿足以下運算律 2 矩陣的乘 回法 兩個矩陣的乘法僅當第答一個矩陣a的列數和另一個矩陣b的行數相等時才能定義。如a是m n矩陣和b是n p矩陣,它們的乘積c是一個m p矩陣 b o.顯然,方程左右同時左乘a的逆,不就得出結論了嘛。順便bs一下不看題就亂回答的...
1編寫M函式,用於計算兩個矩陣的積(兩個矩陣作為輸入
function c ji a,b m n size a m n size b if n m error 前者列數與後者行數不同,無法相乘!else for p 1 m for q 1 n for t 1 n d p,q,t a p,t b t,q endc p,q sum d p,q,endend...
matlab求兩個矩陣相乘,若出錯,澤自動求點乘
第13列 t 50 ts 55 改為t 50 55 50 length x 1 55 matlab計算兩矩陣點乘 1 開啟matlab,在命令列視窗中輸入a 2 4 6 9 b 1 5 5 8 建立2行2列的a,b矩陣 如下圖所示。2 使用矩陣點乘,兩個矩陣的對應位置元素相乘,在命令視窗中輸入 a....