求內插法計算公式會計的插值法怎麼算

2021-03-10 06:32:37 字數 4261 閱讀 5119

1樓:看完就跑真刺激

用內插法的話首先要找一個比14.8km大的一個數,就選擇15km吧,則其對應的**為54元則對版應關係權為:

18            5

x             14.8

54           15

列得算式:

(54-x)/(15-14.8)=(x-18)/(14.8-5)解得x=53.28元

應用內插法求值的條件:

1、必須確知與所求變數值(x)左右緊密相鄰變的兩組變數的數值。(即必須為已知數)

2、與所求變數值(x)相對應的自變數也必須是已知的。

3、基礎變數必須是決定裝置**的主要規格。

2樓:山口壇斜

這個題目不符合實際。起步價的平均值通常都不是計程車的單價。計程車在超過起步價之後的里程通常有一個市內單價和市外長途單價的

3樓:匿名使用者

用內插法的話首先來要找自一個比14.8km大的一個數,就選擇bai15km吧,du則其對應的價

zhi格為54元則對應關係為:dao

18 5

x 14.8

54 15

列得算式:

(54-x)/(15-14.8)=(x-18)/(14.8-5)解得x=53.28元

4樓:旭日東昇

起步價與中間每公里價都不一樣,你沒有給出中間每公里價,怎麼計算?

5樓:匿名使用者

解:15km要錢54元,10km要錢36元設需要錢x元。

(14.8-10)/(x-36)=(15-14.8)/(54-x)求x?看不懂只說明笨,我想不出高招讓你懂

會計的插值法怎麼算

6樓:東奧名師

數學內插法即「直線插入法」。其原理是,若a(i1,b1),b(i2,b2)為兩點,則點p(i,b)在上述兩點確定的直線上。而工程上常用的為i在i1,i2之間,從而p在點a、b之間,故稱「直線內插法」。

數學內插法說明點p反映的變數遵循直線ab反映的線性關係。

上述公式易得。a、b、p三點共線,則:(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直線斜率,變換即得所求。

內插法又稱插值法。根據未知函式f(x)在某區間內若干點的函式值,作出在該若干點的函式值與f(x)值相等的特定函式來近似原函式f(x),進而可用此特定函式算出該區間內其他各點的原函式f(x)的近似值,這種方法,稱為內插法。按特定函式的性質分,有線性內插、非線性內插等;按引數(自變數)個數分,有單內插、雙內插和三內插等。

7樓:匿名使用者

舉個例子:

年金的現值計算公式為 p=a*(p/a,i,n) 此公式中p,i,n已知兩個便可以求出第三個(這裡的i便是您問題中的r)

所以,當已知p和n時,求i便需要使用插值法計算。 您提出問題的截圖是一般演算法,解出以上方程太過複雜,所以需要插值法簡化計算。

例: p/a=2.6087=(p/a,i,3)

查年金現值係數表可知

r p/a

8% 2.5771

所求r 2.6087

7% 2.6243

插值法計算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)

求得 r=7.33%

以上為插值法全部內容舉例說明,除此之外複利的終值與現值、年金的終值都可以使用插值法求的利率或報酬率。

8樓:倔強的説卜苦

插值法又稱"內插法",是利用函式f (x)在某區間中插入若干點的函式值,作出適當的特定函式,在這些點上取已知值,在區間的其他點上用這特定函式的值作為函式f (x)的近似值,這種方法稱為插值法。如果這特定函式是多項式,就稱它為插值多項式。

舉個例子:

年金的現值計算公式為    p=a*(p/a,i,n)     此公式中p,i,n已知兩個便可以求出第三個(這裡的i便是您問題中的r)

所以,當已知p和n時,求i便需要使用插值法計算。 您提出問題的截圖是一般演算法,解出以上方程太過複雜,所以需要插值法簡化計算。

例:    p/a=2.6087=(p/a,i,3)

查年金現值係數表可知

r                                 p/a

8%                             2.5771

所求r                          2.6087

7%                             2.6243

插值法計算:        (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)

求得  r=7.33%

以上為插值法全部內容舉例說明,除此之外複利的終值與現值、年金的終值都可以使用插值法求的利率或報酬率。

插入法的拉丁文原意是「內部插入」,即在已知的函式表中,插入一些表中沒有列出的、所需要的中間值。

若函式f(x)在自變數x一些離散值所對應的函式值為已知,則可以作一個適當的特定函式p(x),使得p(x)在這些離散值所取的函式值,就是f(x)的已知值。從而可以用p(x)來估計f(x)在這些離散值之間的自變數所對應的函式值,這種方法稱為插值法。

如果只需要求出某一個x所對應的函式值,可以用「**內插」。它利用實驗資料提供要畫的簡單曲線的形狀,然後調整它,使得儘量靠近這些點。

如果還要求出因變數p(x)的表示式,這就要用「**內插」。通常把近似函式p(x)取為多項式(p(x)稱為插值多項式),最簡單的是取p(x)為一次式,即線性插值法。在**內插時,使用差分法或待定係數法(此時可以利用拉格朗日公式)。

在數學、天文學中,插值法都有廣泛的應用。

9樓:鐮刀砍柴

^年金的現值計算公式為:p=a*(p/a,i,n),已知a=59000,n=5,(p/a,i,n)為年金現值係數;

複利現值計算公式為:p=f*(1+i)^-n,已知f=1250000,n=5,(1+i)^-n為複利現值係數,舉個例子,先假設i也就是r為5%,對照那兩張係數表代進去看,發現比1000000大了,第二次假設i=15%,算出來比1000000小了,說明在i在5%—15%之間,然後在插個值進去縮小區間,最後的出正確的數10%。

10樓:匿名使用者

你說的是財務管理中算內含報酬率的一種方法嗎?這個原理是比例法。也就是說先取一個小數,再取一個大一點的數,確定結果在兩個試算數字之間,在用比例法計算。

具體公司可以看財務管理或者管理會計的書,應當很清楚。

財務管理中插值法怎麼計算

11樓:湖人總冠軍

插值法的原理及計算公式如下圖,原理與相似三角形原理類似。看懂下圖與公式,即使模糊或忘記了公式也可快速、準確地推匯出來。

數學插值法稱為「直線插入法」,原理是,如果a(i1,b1)和b(i2,b2)是兩點,那麼p(i,b)點在由上述兩點確定的直線上。在工程中,i通常介於i1和i2之間,所以p介於a和b點之間,所以稱為「線性插值」。

數學插值表明,p點反映的變數遵循ab線反映的線性關係。

上述公式很容易得到。a、 那麼b和p是共線的(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=通過變換得到的直線斜率。

12樓:小遠遠真帥

每一個折現率會對應一個現值。比如求內部收益率irr,就是求使得未來現金流量現值為0 的那個折現率,在這一組中,irr對應的現值是0;再試著用不同的折現率代入式子中求出不同的現值。先試一個折現率比如10%,得出一個現值假設為100,這個值比0大,那麼應該再試一個比10%大的折現率;再試一個折現率假設為12%,得出一個現值假設為-20,這個數比0小;這說明irr應該在10%與12%這間。

剛才的試算過程對一個對應關係:irr對應0,10%對應100,12%對應-20。現在,用插入法把剛才試的結果列一個式子:

(irr-10%)/(12%-10%)=(0-100)/(-20-100),求得irr=11.67%。

這個公式不用死背,左邊是折現率,右邊是現值,這三個數兩兩相減,左邊誰減的誰,右邊它對應現值就誰減誰,左右對應關係別搞錯了就行。

以上是我在做插值法中的體會,不知是否適用於您。僅供參考

線性內插法具體怎麼計算,線性內插法具體怎麼計算?

線性內插是假設來 在二個已知數源據中bai的變化為線性關係,因此可由du已知zhi二點的座標 a,b 去計算dao通過這二點的斜線,公式見下面上傳的檔案。其中 a 函式值。舉個例子,已知x 1時y 3,x 3時y 9,那麼x 2時用線性插值得到y就是3和9的算術平均數6。寫成公式就是 y y1 y2...

會計的插值法怎麼算會計裡的插值法怎麼計算

數學內插法即 直線插入法 其原理是,若a i1,b1 b i2,b2 為兩點,則點p i,b 在上述兩點確定的直線上。而工程上常用的為i在i1,i2之間,從而p在點a b之間,故稱 直線內插法 數學內插法說明點p反映的變數遵循直線ab反映的線性關係。上述公式易得。a b p三點共線,則 b b1 i...

拉格朗日插值公式,拉格朗日插值法公式怎麼記??

建議你看看這上面的證明過程 http hi.拉格朗日插值法公式怎麼記?50 線性插值也叫兩點插值,已知函式y f x 在給定互異點x0,x1上的值為y0 f x0 y1 f x1 線性插值就是構造一個一次多項式 p1 x ax b,使它滿足條件 p1 x0 y0,p1 x1 y1 其幾何解釋就是一條...