問什麼任何函式都可以表示成奇函式與偶函式的和

2021-03-11 11:58:31 字數 5582 閱讀 3342

1樓:緋雪流櫻

f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2,前者為偶函式,後者為奇函式,你把它寫成這樣的形式就可以看出來。

2樓:匿名使用者

對任何一個函式f(x),都可以寫成f(x)=g(x)+h(x) 其中g(x)是奇函式回,h(x)是偶函式 為了證明這一點,我們並不是

答從一個奇函式和一個偶函式的和如何構成任意函式 而是通過證明任意函式都能分解成g(x)+h(x)來得證得. 正規的證明如下: 證明:

先假設f(x) = g(x) + h(x)是存在的,設為1式 則f(-x) = g(-x) + h(-x),設為2式 奇函式性質:g(x)=-g(-x) 偶函式性質:h(x)=h(-x) 那麼分別拿1式+2式,1式-2式得到:

f(x)+f(-x)=2h(x) f(x)-f(-x)=2g(x) 由此我們得出結論,對任意的f(x),我們能夠構造這麼兩個函式 g(x)=[f(x)-f(-x)]/2 是奇函式 h(x)=[f(x)+f(-x)]/2 是偶函式 且g(x)+h(x)=f(x) 證畢. 通過這個證明還能夠得到如何分解成奇函式和偶函式的方法。

為何任意一個函式都可以寫成一個奇函式和一個偶函式之和? 5

3樓:不是苦瓜是什麼

因為函式f(x)一定可以分解為奇函式和偶函式之和。其實可以直接從構造出的兩個函式來證明就行了。 f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2

設函式y=f(x)

令f(x)=[f(x)+f(-x)]/2,則f(-x)=[f(-x)+f(x)]/2=f(x)

於是f(x)為偶函式

令g(x)=[f(x)-f(-x)]/2,則g(-x)=[f(-x)-f(x)]/2=-g(x)

則g(x)為奇函式

f(x)+g(x)=[f(x)+f(-x)]/2+)[f(x)-f(-x)]/2

=f(x)

於是任意f(x)可表示為偶函式f(x)=[f(x)+f(-x)]/2與奇函式g(x)=[f(x)-f(-x)]/2的和

所以,任意一個函式都可以寫成一個奇函式和一個偶函式之和。

函式的奇偶性也就是對任意xel,若f(-x)=f(x),即在關於y軸的對稱點的函式值相等,則f(x)稱為偶函式;若f(-x)= - f(x),即對稱點的函式值正負相反,則f(x)稱為奇函式。

在平面直角座標系中,偶函式的圖象對稱於y軸,奇函式的圖象對稱於原點.可導的奇(偶)函式的導函式的奇偶性與原來函式相反。定義在對稱區間(或點集)上的任何函式f(x)都可以表示成奇函式φ( x)和偶函式ψ(x)之和。

4樓:

對任何一個函式f(x),都可以寫成f(x)=g(x)+h(x)其中g(x)是奇函式,h(x)是偶函式

為了證明這一點,我們並不是從一個奇函式和一個偶函式的和如何構成任意函式

而是通過證明任意函式都能分解成g(x)+h(x)來得證得.

正規的證明如下:

證明:先假設f(x) = g(x) + h(x)是存在的,設為1式則f(-x) = g(-x) + h(-x),設為2式奇函式性質:g(x)=-g(-x)

偶函式性質:h(x)=h(-x)

那麼分別拿1式+2式,1式-2式得到:

f(x)+f(-x)=2h(x)

f(x)-f(-x)=2g(x)

由此我們得出結論,對任意的f(x),我們能夠構造這麼兩個函式g(x)=[f(x)-f(-x)]/2 是奇函式h(x)=[f(x)+f(-x)]/2 是偶函式且g(x)+h(x)=f(x)

證畢.通過這個證明還能夠得到如何分解成奇函式和偶函式的方法

5樓:哿桉

這個證明基於假設的基礎上,怎麼可能對

證明任意一個函式都可拆分成一個偶函式和一個奇函式的和

6樓:皮皮鬼

對任何一個函式f(x),都可以寫成f(x)=g(x)+h(x)其中g(x)是奇函式,h(x)是偶函式

為了證明這一點,我們並不是從一個奇函式和一個偶函式的和如何構成任意函式

而是通過證明任意函式都能分解成g(x)+h(x)來得證得.

正規的證明如下:

證明:先假設f(x) = g(x) + h(x)是存在的,設為1式則f(-x) = g(-x) + h(-x),設為2式奇函式性質:g(x)=-g(-x)

偶函式性質:h(x)=h(-x)

那麼分別拿1式+2式,1式-2式得到:

f(x)+f(-x)=2h(x)

f(x)-f(-x)=2g(x)

由此我們得出結論,對任意的f(x),我們能夠構造這麼兩個函式g(x)=[f(x)-f(-x)]/2 是奇函式h(x)=[f(x)+f(-x)]/2 是偶函式

任意函式都可表示成一個奇函式和一個偶函式的和,求舉個例子啊

7樓:匿名使用者

對任意函

數f(x),令g(x)=[f(x)+f(-x)]/2,h(x)=[f(x)-f(-x)]/2

g(-x)=[f(-x)+f(x)]/2=g(x),所以g(x)是偶函式

h(-x)=[f(-x)-f(x)]/2=-h(x),所以h(x)是奇函式

兩式相加,g(x)+h(x)=f(x)

所以任意函式f(x)都能表示成一個奇函式和一個偶函式的和

特別地,若f(x)=x^2(偶函式),則f(x)=x^2+0,其中g(x)=x^2是偶函式,

h(x)=0是既奇又偶函式(當然也是奇函式)。

若f(x)=x(奇函式),則f(x)=x+0,其中h(x)=x是奇函式,

g(x)=0是既奇又偶函式(當然也是偶函式)。

求證:定義域為r的任意函式都可以表示成一個奇函式和一個偶函式之和

8樓:淚笑

證明:bai假設定義域為r的函式duf(x)可以表zhi示成一個奇函式daog(x)和一個偶函式h(x)的和∴∴f(x)=g(x)+h(x).............①f(-x)=g(-x)+h(-x)

又專g(-x)=-g(x),h(-x)=h(x)∴f(-x)=-g(x)+h(x).........②由①②知,h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2

檢驗:屬h(-x)=[f(-x)+f(x)]/2=h(x)g(x)=[f(-x)-f(x)]/2=-g(-x)∴定義域為r的函式f(x)都可以表示成一個奇函式g(x)和一個偶函式h(x)的和

,且h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2

9樓:手機使用者

題目應復該有問題,一個

制偶函式和一個奇函式乘積還是一bai個奇函du數,而f(x)是任意一個函zhi數,它可以dao為奇函式也可以為偶函式,因此有錯誤。

如果改為表示成一個偶函式和一個奇函式的和的形式,則可以表示如下:

f(x)=(f(x)-f(-x))/2+(f(x)+f(-x))/2;

其中(f(x)-f(-x))/2是奇函式,(f(x)+f(-x))/2為偶函式。

請採納答案,支援我一下。

證明:任何一個函式都可以表示為一個奇函式和一個偶函式之和

10樓:桃兒wj9燭

證明:若f(x)為定義在(-n,n)上的任意函式,則設g(x)=f(x)+f(?x)2,

h(x)=f(x)?f(?x)2;

易驗證g(x)=g(-x),

-h(x)=h(-x),

所以g(x)為偶函式,h(x)為奇函式.

而f(x)=g(x)+h(x),

所以得證.

11樓:yechunhong葉子

不是任何一個函式都可以,定義域要關於原點對稱

證明定義在r上的任意函式都可以表示成一個奇函式和一個偶函式的和.

12樓:

設f(x)=g(x)+h(x)①,g(x)為奇函copy數,h(x)為偶函式。

則有f(-x)=g(-x)+h(-x)=-g(x)+h(x)②解①②組成的

方程組:

g(x)=[f(x)-f(-x)]/2

h(x)=[f(x)+f(-x)]/2。

13樓:

任意函式copyf(x),構造兩個bai函式,g(x),h(x)其中,g(x)=(f(x)-f(-x))/2h(x)=(f(x)+f(-x))/2

由於g(-x)=(f(-x)-f(x))/2=-g(-x)h(-x)=(f(-x)+f(x))/2=h(x)所以du

zhig(x)為奇函式,h(x)為偶函式

g(x)+h(x)=(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x)。dao

證明:任意一個奇函式總可以表示成一個奇函式與一個偶函式之和。

14樓:匿名使用者

證明:任意函式

f(x),構造兩個函式,g(x),h(x)

其中:g(x)=(f(x)-f(-x))/2 h(x)=(f(x)+f(-x))/2

由於:g(-x)=(f(-x)-f(x))/2=-g(-x) h(-x)=(f(-x)+f(x))/2=h(x)

所以g(x)為奇函式,h(x)為偶函式。

g(x)+h(x)=(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x)。

所以得證: 任意一個奇函式g(x)總可以表示成一個奇函式g(x)與一個偶函式h(x)之和。

即:任意一個奇函式總可以表示成一個奇函式與一個偶函式之和。

擴充套件資料

例:以下說法正確的是()。

①定義在r上的任一函式,總可以表示成一個奇函式與一個偶函式的和;

②若f(3)=f(-3),則函式f(x)不是奇函式;

③對應法則和值域相同的兩個函式的定義域也相同;

④若x1是函式f(x)的零點,且m<x1<n,那麼f(m)•f(n)<0一定成立。

分析:①設f(x)=g(x)+h(x),其中g(x)為奇函式,h(x)為偶函式,則f(-x)=g(-x)+h(-x)=-g(x)+h(x),

兩式聯立得,g(x)=f(x)-f(-x))/2,h(x)=(f(x)+f(-x))/2 ,所以①正確。

②若函式f(x)是奇函式,則有f(-3)=-f(3),若f(3)=f(-3),則必有f(3)=f(-3)=0,所以當f(3)=f(-3)=0,函式有可能是奇函式,所以②錯誤。

③當函式的定義域和對應法則相同時,函式的值域相同,但值域相同時,定義域不一定相同,比如函式f(x)=x2,當定義域為[0,1]時,值域為[0,1],當定義域為[-1,1]時,值域為[0,1],所以③錯誤。

④若x1是函式f(x)的零點,則根據根的存在性定理可知,f(m)•f(n)<0不一定成立,比如函式f(x)=x2的零點是0,但f(m)•f(n)>0,所以④錯誤。

故答案為:①

15樓:匿名使用者

設這個奇函式為f(x),則f(x)=(f(x)+f(-x)-f(-x)+f(x))/2

=(f(x)+f(-x))/2+(f(x)-f(-x))/2

根據定義知前者為偶函式後者為奇函式

證明定義在上的任何函式fx都可以表示為偶

任意一個奇函式可表示為 f x f x 2,任意一個偶函式可表示為 f x f x 2,對稱區回間 l,l 上任意函式 f x f x f x 2 f x f x 2 即得證。答 證明定義在 l,l 上的任意函式f x 必可表示為一個偶函式與一個奇函式的和。求答案 設f x g x h x 其中g ...

任何有理數都可以用數軸上的什麼表示

由x 1 copyk 2,k z得 x k 1 2,k z tanx 函式的對bai稱軸是 2.tanx的函式週du期是 所以zhix 1 k 2。自然定義域dao注意以下幾點 1 分母不為0 2 負數不能開偶次方 3 對數的真數要大於0 4 三角反三角函式要符合其定義域 5 同時含有分式,對數式,...

書可以比喻成什麼,書都可以比作成什麼?

高爾基說 書籍是人類進步的階梯。西漢劉向說 書猶藥也,善讀之可以醫愚。書好是像藥,善於讀書可以醫治愚昧 他們的話都是對書的比喻。知識的海洋 人生的航標 人生的燈塔 人生的起航點 無聲的老師 珍貴的朋友 人生不可缺少的一部分 成長的必需品 陪伴你成長的兄長 永遠的存摺 蘊藏著無限的財富 一般來說,書可...