人工智慧為什麼需要大量標註資料,為什麼說資料標註是人工智慧的基石?

2021-06-30 02:49:00 字數 1354 閱讀 2723

1樓:曼孚科技

類比人類小時候是如何認識這個世界的。

當我們第一次見到蘋果時,身邊的人會告訴我們這是一個蘋果,那我們以後見到具有相同特徵的水果就知道它是蘋果了。

同理,機器也是一樣,我們將一張標註好的蘋果**交給機器學習,那麼機器就可以識別出這張圖**裡的蘋果。但是與人不同,機器並不具備聯想與思考的能力,換成另外一張**就無法識別出裡面的蘋果了。

所以,為了讓機器可以識別出更多場景裡的蘋果,就需要給機器投喂大量資料,投喂的資料越多、資料質量越高,那麼機器學習的模型效果就會越好。

2樓:沃然網路

我們知道機器學習分為有監督學習和無監督學習。無監督學習的效果是不可控的,常常是被用來做探索性的實驗。而在實際產品應用中,通常使用的是有監督學習。

有監督的機器學習就需要有標註的資料來作為先驗經驗。

在進行資料標註之前,我們首先要對資料進行清洗,得到符合我們要求的資料。資料的清洗包括去除無效的資料、整理成規整的格式等等。具體的資料要求可以和演算法人員確認。

為什麼說資料標註是人工智慧的基石?

3樓:曼孚科技

要想實現人工智慧,我們需要把我們人類的理解和判斷教給計算機,讓機器擁有人類般的識別能力。

回想一下我們在小的時候是如何認知這個世界的,比如汽車。當我們第一次見到汽車這個物體時,我們並不知道它叫什麼有什麼用。我們的父母會告訴我們,這個東西讀作「汽車」,它是這樣的形狀,並且能夠行駛。

類比機器學習。我們要讓機器明白什麼是汽車,只能給機器一張汽車的**,標註出汽車輪廓,並標記上名字「汽車」,這個時候機器就能識別出這張**裡的汽車了。

然而,相比如人類,機器並不具備思考與聯想的能力。換一張**之後,機器可能就識別不出來裡面的「汽車」了。怎麼辦?

這個時候需要給機器大量標註好的**,讓機器找到這些**裡汽車的共同特徵,那麼以後就可以識別出其他汽車了。

因此,機器學習的過程也是大量學習標註資料的過程,標註資料質量的高低也成為了決定人工智慧技術是否落地的關鍵性因素。

4樓:

其實人工智慧是通過資料基礎來實現的,如果沒有相應的資料的話人工智慧相當於就沒有任何的支撐。好比人工智慧可以聽懂人說的話,它其實是把人說的話拿來和基礎的資料進行比對,來分析出人說話的內容。如果沒有這個基礎,即便是機器把人說的話錄音下來了,但是卻沒有解析成資訊的能力。

5樓:血影藍凌

如果人工智慧是一個天賦異稟的孩子,那麼資料標註就是它的啟蒙老師,在傳授的過程中,老師講的越細緻,越有耐心,那麼孩子成長的也就越穩健。同樣,換個角度,如果說人工智慧是一條高速公路,那麼資料標註就是高速公路的基石,基石越穩固,質量越過硬,那麼就會使用起來就會越放心,越長久。

學習人工智慧有什麼要求嗎,學人工智慧需要具備哪些條件?

人工智慧是一個包含很多學科的交叉學科,你需要了解計算機的知識 資訊理論 控制論 圖論 心理學 生物學 熱力學,要有一定的哲學基礎,有科學方 作保障。人工智慧學習路線如下 首先你需要數學基礎 高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析 其次需要演算法的積累 人工神經網路,支援向量...

人工智慧是學習什麼,人工智慧需要學習哪些課程?

人工智慧領域方面的專家對人工智慧做了不同的定義,但目前人工智慧的概還沒有統一版,他們定義有一些共同權點可以歸納為 依賴的硬體為計算機 注 這個計算機不單單指我們日常用的膝上型電腦 自身有特定的演算法可以通過經驗學習提高自己的不足 從基礎學科來分析 人工智慧主要得學習數學,計算機,演算法,心理學,統計...

人工智慧會給人類帶來的危害為什麼人工智慧越來越成熟,會給人類的生活帶來危害?

我們要相信科學,做好自己 智慧世來紀,紙幣消自失,貨幣數字化,收入和消費會完全透明化。收入分為社 會保障點數和社會信用點數。社會保障點數是定時下發,只用於基本生活物資的消費。信用點數可用於所有消費。信用點數是通過參與社會指定的工作來獲取,或是提供其他產品或服務來與他人交換獲得。人工智慧在所有生產領域...