1樓:風繼續吹的是我
數學和物理在計來算機發展中起核心作
源用。數學是計算
機科學的基礎,準確來說,計算機只不過是數學在特定領域的一個應用。
有人說,0和1就構成這個世界。這句話意在說明數學對於人類發展和人們生活的重要性。也正因為有了數學,有了2進位制,有了資料結構,有了演算法等等,才會為構建計算機領域的萬千世界提供了夯實的基礎
其實學習數學是為了可以更好的去學學習計算機,首先,如果學好了例如大學所學習的大學數學,離散,線性代數等,可以培養好的邏輯思維,而在學習計算機,尤其是學習計算機軟體的程式設計的時候是非常有用的。所以學說,學好數學,可以把數學中的邏輯思維應用在計算機上。
2樓:匿名使用者
數學是建立計算機的關鍵,計算機是目前進行解答數學的工具
3樓:匿名使用者
overed with snows of cynici** and th
計算機到底和數學有什麼關係
4樓:河傳楊穎
數學是基礎學科,有豐富的數學基礎可以對理解程式設計中的邏輯有幫助。
程式設計對不同的人有不同的意義:
對於一般的程式設計師就是**的產出和可執行程式(數學在這裡面並不是特別重要,更重要的是對各種框架的理解、熟練掌握、設計模式等)。
對於演算法工程師來說,數學就很重要了(例如機器學習,密碼學,計算機圖形學等,當然這個對題主來說還太遙遠)。
題主說的函式實際上就是為了實現目的的一種封裝形式,而遞迴只是在函式中呼叫自身(當然需要終止條件)。
擴充套件資料
計算機的三大主要特點
1、運算速度快:計算機內部電路組成,可以高速準確地完成各種算術運算。當今計算機系統的運算速度已達到每秒萬億次,微機也可達每秒億次以上,使大量複雜的科學計算問題得以解決。
例如:衛星軌道的計算、大型水壩的計算、24小時天氣算需要幾年甚至幾十年,而在現代社會裡,用計算機只需幾分鐘就可完成。
2、計算精確度高:科學技術的發展特別是尖端科學技術的發展,需要高度精確的計算。計算機控制的導彈之所以能準確地擊中預定的目標,是與計算機的精確計算分不開的。
一般計算機可以有十幾位甚至幾十位(二進位制)有效數字,計算精度可由千分之幾到百萬分之幾,是任何計算工具所望塵莫及的。
3、邏輯運算能力強:計算機不僅能進行精確計算,還具有邏輯運算功能,能對資訊進行比較和判斷。計算機能把參加運算的資料、程式以及中間結果和最後結果儲存起來,並能根據判斷的結果自動執行下一條指令以供使用者隨時呼叫。
5樓:匿名使用者
電腦科學和數學的關係有點奇怪。二三十年以前,電腦科學基本上還是數學的一個分
支。而現在,電腦科學擁有廣泛的研究領域和眾多的研究人員,在很多方面反過來推動
數學發展,從某種意義上可以說是孩子長得比媽媽還高了。
但不管怎麼樣,這個孩子身上始終流著母親的血液。這血液是the mathematical underpi
nning of ***puter science(電腦科學的數學基礎),-- 也就是理論電腦科學。
現代電腦科學和數學的另一個交叉是計算數學/數值分析/科學計算,傳統上不包含在理
論電腦科學以內。所以本文對計算數學全部予以忽略。
最常和理論電腦科學放在一起的一個詞是什麼?答:離散數學。這兩者的關係是如此密
切,以至於它們在不少場合下成為同義詞。
傳統上,數學是以分析為中心的。數學系的同學要學習三四個學期的數學分析,然後是復
變,實變,泛函等等。實變和泛函被很多人認為是現代數學的入門。在物理,化學,工程
上應用的,也以分析為主。
隨著電腦科學的出現,一些以前不太受到重視的數學分支突然重要起來。人們發現,這
些分支處理的數學物件與傳統的分析有明顯的區別:分析研究的物件是連續的,因而微分
,積分成為基本的運算;而這些分支研究的物件是離散的,因而很少有機會進行此類的計
算。人們從而稱這些分支為「離散數學」。「離散數學」的名字越來越響亮,最後導致以
分析為中心的傳統數學分支被相對稱為「連續數學」。
離散數學經過幾十年發展,基本上穩定下來。一般認為,離散數學包含以下學科:
1) 集合論,數理邏輯與元數學。這是整個數學的基礎,也是電腦科學的基礎。
2) 圖論,演算法圖論;組合數學,組合演算法。電腦科學,尤其是理論電腦科學的核心是
演算法,而大量的演算法建立在圖和組合的基礎上。
3) 抽象代數。代數是無所不在的,本來在數學中就非常重要。在電腦科學中,人們驚訝
地發現代數竟然有如此之多的應用。
但是,理論電腦科學僅僅就是在數學的上面加上「離散」的帽子這麼簡單嗎?一直到大
約十幾年前,終於有一位大師告訴我們:不是。d.
e.knuth(他有多偉大,我想不用我廢話了)在stanford開設了一門全新的課程concrete mathematics。 concrete這個詞在這裡有兩層含義:
第一,針對abstract而言。knuth認為,傳統數學研究的物件過於抽象,導致對具體的問題
關心不夠。他抱怨說,在研究中他需要的數學往往並不存在,所以他只能自己去創造一些
數學。為了直接面嚮應用的需要,他要提倡「具體」的數學。在這裡我做一點簡單的解釋。
例如在集合論中,數學家關心的都是最根本的問題--公理系統的各種性質之類。而一些具體集合的性質,各種常見集合,關係,對映都是什麼樣的,數學家覺得並不重要。然而,在電腦科學中應用的,恰恰就是這些具體的東西。
knuth能夠首先看到這一點,不愧為當世計算機第一人。
第二,concrete是continuous(連續)加上discrete(離散)。不管連續數學還是離散數學,
都是有用的數學!
前面主要是從數學角度來看的。從計算機角度來看,理論電腦科學目前主要的研究領域
包括:可計算性理論,演算法設計與複雜性分析,密碼學與資訊保安,分散式計算理論,並
行計算理論,網路理論,生物資訊計算,計算幾何學,程式語言理論等等。這些領域互相
交叉,而且新的課題在不斷提出,所以很難理出一個頭緒來。
下面隨便舉一些例子。
由於應用需求的推動,密碼學現在成為研究的熱點。密碼學建立在數論(尤其是計算數論)
,代數,資訊理論,概率論和隨機過程的基礎上,有時也用到圖論和組合學等。
很多人以為密碼學就是加密解密,而加密就是用一個函式把資料打亂。這就大錯特錯了。
現代密碼學至少包含以下層次的內容:
第一,密碼學的基礎。例如,分解一個大數真的很困難嗎?能否有一般的工具證明協議正
確?第二,密碼學的基本課題。例如,比以前更好的單向函式,簽名協議等。
第三,密碼學的高階問題。例如,零知識證明的長度,祕密分享的方法。
第四,密碼學的新應用。例如,數字現金,叛徒追蹤等。
6樓:匿名使用者
計算機都是用二進位制數字來運算的。
7樓:匿名使用者
數學只要是演算法思想.. 程式設計核心就是演算法思想。
數學與計算機演算法有什麼關係?
8樓:古東方帝俊
從簡單的計算來說,數學是十進位制的,而計算機是通過二進位制的,也就是先把數字用二進位制轉換,通過計算再轉換回來
9樓:凡綴目壁
當然不一樣!數學中的演算法是數的運算,而計算機除了數的運算還有邏輯運算。
量子計算機與光子計算機生物計算機哪個更強
量子計算機全世界有一些,但是由於能耗大,工作時溫度高,需要降溫裝置,而且一臺量子計算機的壽命不到一年 量子計算機,量子計算機是瞬間不管多遠距離,只是一瞬間,量子計算機就像開關一樣,一個只要確定關,另一個馬上就是開,具體什麼糾結,原理,我也說不上來,不管多遠距離就是一瞬間。量子計算機是利用量子力學規律...
什麼是計算機木馬,計算機病毒與計算機木馬的概念是什麼?
木馬 trojan 希臘傳說中特洛伊王子誘走了王后海倫,希臘人因此遠征特洛伊久攻不下,希臘將領奧德修斯用計通過藏有士兵的木馬被對方繳獲搬入城中一舉戰勝對方,現在通過延伸把利用計算機程式漏洞侵入後竊取他人檔案 財產與隱私的程式稱為木馬。它是指通過一段特定的程式 木馬程式 來控制另一臺計算機。木馬通常有...
計算機的計算問題,計算機如何計算問題
1kb 1024b。用a 1k 2170b 1024b得p 2 即整除得頁面數 用a mod 1kb 2170 mod 1024 122 即取餘數得相對地址 得d 122。這個有點難,不算是計算機問題。計算機問題 驅動沒裝好的原因,裝驅動的時候先把掃描器電源關掉,等到安裝到中間的時候會提示開啟掃描器...