知道點怎麼求那個平面的法向量知道三個點怎麼求那個平面的法向量

2021-03-07 01:04:51 字數 6169 閱讀 2005

1樓:韓苗苗

設a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)是已知平面上的3個點

a,b,c可以形成3個向量,向量ab,向量ac和向量bc

則ab(x2-x1,y2-y1,z2-z1),ac(x3-x1,y3-y1,z3-z1),bc(x3-x2,y3-y2,z3-z2)

設平面的法向量座標是(x,y,z)

有(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0 且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0 且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0

可以解得x,y,z。

擴充套件資料

平面,是指面上任意兩點的連線整個落在此面上,一種二維零曲率廣延,這樣一種面,它與同它相似的面的任何交線是一條直線。

三維平面的法線是垂直於該平面的三維向量。曲面在某點p處的法線為垂直於該點切平面(tangent plane)的向量。

如果曲面在某點沒有切平面,那麼在該點就沒有法線。例如,圓錐的頂點以及底面的邊線處都沒有法線,但是圓錐的法線是幾乎處處存在的。通常一個滿足lipschitz連續的曲面可以認為法線幾乎處處存在。

對於立體表面而言,法線是有方向的:一般來說,由立體的內部指向外部的是法線正方向,反過來的是法線負方向。

曲面法線的法向不具有唯一性;在相反方向的法線也是曲面法線。定向曲面的法線通常按照右手定則來確定。

2樓:鄙視04號

已知:a,b,c三點,求平面abc的法向量過程如下:

其中可以任意設一個a的值,然後通過解二元一次方程即可解出b、c的值。

例:已知空間三點a(0,0,2),b(0,2,2),c(2,0,2),求平面abc的一個法向量.

解:∵空間三點a(0,0,2),b(0,2,2),c(2,0,2)

3樓:匿名使用者

利用向量積可以求出和平面垂直的向量

設三點座標為a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)

向量ab=(x2-x1,y2-y1,z2-z1),ac=(x3-x1,y3-y1,z3-z1)

ab、ac所在平面的法向量即ab×ac=(a,b,c),其中:

a=(y2-y1)(z3-z1)-(z2-z1)(y3-y1)b=(z2-z1)(x3-x1)-(z3-z1)(x2-x1)c=(x2-x1)(y3-y1)-(x3-x1)(y2-y1)

4樓:睦翠花喜書

設a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)是已知平面上的3個點,那麼這三個點可以形成3個向量,比如向量ab,向量ac和向量bc則ab(x2-x1,y2-y1,z2-z1),ac(x3-x1,y3-y1,z3-z1),(x3-x2,y3-y2,z3-z2)也已知.設平面的法向量座標是(x,y,z)則,根據法向量定義的:(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0

且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0解出來x,y,z就是平面法向量的座標,方向滿足右手螺旋法則。

5樓:匿名使用者

三個點 可以得出三個向量,設法向量(a,b,c)法向量同他們相乘等於零。或者只用兩個向量用行列式算。

已知 一個平面的三點座標 怎麼求法向量

6樓:小小芝麻大大夢

設a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)是已知平面上的3個點,那麼這三個點可以形成3個向量,比如向量ab,向量ac和向量bc則ab(x2-x1,y2-y1,z2-z1),ac(x3-x1,y3-y1,z3-z1),(x3-x2,y3-y2,z3-z2)也已知.設平面的法向量座標是(x,y,z)。

則,根據法向量定義的:(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0 且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0 且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0 解出來x,y,z就是平面法向量的座標,方向滿足右手螺旋法則。

擴充套件資料

一個平面(plane)存在無限個法向量(normal vector)。

在電腦圖學(***puter graphics)的領域裡,法線決定著曲面與光源(light source)的濃淡處理(flat shading),對於每個點光源位置,其亮度取決於曲面法線的方向。

如果一個非零向量n與平面a垂直,則稱向量n為平面a的法向量。

垂直於平面的直線所表示的向量為該平面的法向量。每一個平面存在無數個法向量。

已知 一個平面的三點座標 怎麼求法向量?

7樓:

設a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)是已知來平面上的3個點,源那麼這三個點可以形成3個向量,比如向量ab,向量ac和向量bc則ab(x2-x1,y2-y1,z2-z1),ac(x3-x1,y3-y1,z3-z1),(x3-x2,y3-y2,z3-z2)也已知。設平面的法向量座標是(x,y,z)則,根據法向量定義的:

(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0 且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0 且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0 解出來x,y,z就是平面法向量的座標,方向滿足右手螺旋法則。

8樓:碧水寒川

是這樣求的,假設你要求向量ab,那就要先求出向量ab的座標,向量ab的座標是用b點的座標減去a電的座標,假設求出ab的座標是(2,3),那麼,向量ab就等於根號下2的平方加上3的平方,等於根號下13

已知三點座標 求平面向量的法向量。

9樓:匿名使用者

不知道你怎麼算的,正確的方法是,已知三點abc, 向量ab=b-a, 向量ac=c-a, ab x ac就是答案

你怎麼又是x,y又是z的,哪那麼麻煩

已知空間中三個點的座標 求其組成平面的法向量

10樓:匿名使用者

個人認為,難點在於解方程,而一般情況,方程的程式都是用公式解的,你可以查查~_~

還有另外一種方法,就是高等數學裡面的,向量的乘積×,說到底也就是公式嘛。

祝你好運~_~

怎樣求平面的法向量

11樓:匿名使用者

如果是高中數學,可以這樣

向量ba=(1,0,-1),向量bc=(0,1,1)設法向量p=(a,y,z)

p與ba,bc都垂直

x-z=0,y+z=0

x=-y=z

取一組非零解,x=1,y=-1,z=1

所求法向量(1,-1,1)

大學用叉乘,行列式.

向量ab=(1,0,-1) 向量ac=(1,-1,-2)平面abc的法向量n=向量ab×向量ac

i,j,k

= 1,0,-1

1,-1,-2

=0×(-2)×i+(-1)×1×j+1×(-1)×k-[0×1×k+(-1)×(-1)×i+(-2)×1×j]=(-i,j,-k)=(-1,1,-1)

方向遵循右手定則.

12樓:森海和你

平面法向量的具體步驟:(待定係數法)

1、建立恰當的直角座標系

2、設平面法向量n=(x,y,z)

3、在平面內找出兩個不共線的向量,記為a=(a1,a2, a3) b=(b1,b2,b3)

4、根據法向量的定義建立方程組①n·a=0 ②n·b=0

5、解方程組,取其中一組解即可。

例如已知三個點求那個平面的法向量:

設a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)是已知平面上的3個點

a,b,c可以形成3個向量,向量ab,向量ac和向量bc

則ab(x2-x1,y2-y1,z2-z1),ac(x3-x1,y3-y1,z3-z1),bc(x3-x2,y3-y2,z3-z2)

設平面的法向量座標是(x,y,z)

有(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0 且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0 且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0

可以解得x,y,z。

三維平面的法線是垂直於該平面的三維向量。曲面在某點p處的法線為垂直於該點切平面(tangent plane)的向量。

法線是與多邊形(polygon)的曲面垂直的理論線,一個平面(plane)存在無限個法向量(normal vector)。在電腦圖學(***puter graphics)的領域裡,法線決定著曲面與光源(light source)的濃淡處理(flat shading),對於每個點光源位置,其亮度取決於曲面法線的方向。

如果一個非零向量n與平面a垂直,則稱向量n為平面a的法向量。

垂直於平面的直線所表示的向量為該平面的法向量。每一個平面存在無數個法向量。

13樓:婁寄竹趙妍

還有一種方法:在平面內找到兩個不共線的向量,設為向量a和b他們的向量積為m=a×b

(這裡的×不是乘號,具體定義可以檢視向量積的定義)=|a|*|b|*sinθ

(||代表向量a的模,θ為向量a和b的夾角)如果向量a和b是座標形式,則用行列式ii

jki(i

jk是三座標單位基地向量)ia

bcii

mnpi

=(bp-**)i+(mc-pa)j+(an-bm)k即:m=(bp-**,mc-pa,an-bm)他就是一個法向量,這裡的字母都表示數字,而不是向量。

14樓:我就是我啊

高中數學的那個設法向量p設錯了 不是a

15樓:說康衷曼吟

其實一個平面有無數法向量,

這些法向量都平行。

任意一個平面:ax+by+cz+d=0,取一組數x0,y0,z0滿足該方程,則:

ax0+by0+cz0+d=0,兩式相減得:a(x-x0)+b(y-y0)+c(z-z0)=0,這就是平面的點法式方程

表示過點(x0,y0,z0),以n=(a,b,c)為法線的平面。ax+by+cz+d=0就是平面的一般方程

記住:方程中x,y、z的係數就是該平面的一個法向量

你的方程就是這樣的,故平面的一個法向量:n=(1,3,2),但這不是唯一的

像3n=(3,9,6)也是。

平面的法向量怎麼求

16樓:森海和你

平面法向量的具體步驟:(待定係數法)

1、建立恰當的直角座標系

2、設平面法向量n=(x,y,z)

3、在平面內找出兩個不共線的向量,記為a=(a1,a2, a3) b=(b1,b2,b3)

4、根據法向量的定義建立方程組①n·a=0 ②n·b=0

5、解方程組,取其中一組解即可。

例如已知三個點求那個平面的法向量:

設a(x1,y1,z1),b(x2,y2,z2),c(x3,y3,z3)是已知平面上的3個點

a,b,c可以形成3個向量,向量ab,向量ac和向量bc

則ab(x2-x1,y2-y1,z2-z1),ac(x3-x1,y3-y1,z3-z1),bc(x3-x2,y3-y2,z3-z2)

設平面的法向量座標是(x,y,z)

有(x2-x1)*x+(y2-y1)*y+(z2-z1)*z=0 且(x3-x1)*x+(y3-y1)*y+(z3-z1)*z=0 且(x3-x2)*x+(y3-y2)*y+(z3-z2)*z=0

可以解得x,y,z。

三維平面的法線是垂直於該平面的三維向量。曲面在某點p處的法線為垂直於該點切平面(tangent plane)的向量。

法線是與多邊形(polygon)的曲面垂直的理論線,一個平面(plane)存在無限個法向量(normal vector)。在電腦圖學(***puter graphics)的領域裡,法線決定著曲面與光源(light source)的濃淡處理(flat shading),對於每個點光源位置,其亮度取決於曲面法線的方向。

如果一個非零向量n與平面a垂直,則稱向量n為平面a的法向量。

垂直於平面的直線所表示的向量為該平面的法向量。每一個平面存在無數個法向量。

平面向量叉乘怎麼運算,三個向量rr叉乘如何計算

兩個向量點乘,得到的是兩個向量的數量積 數量積是一個數量,沒有方向。兩個向量叉乘,得到的向量積是一個向量。而向量乘以實數,得到的仍是一個向量。兩個向量a和copyb的叉積寫作a b 有時也被寫成baia b,避免和字母dux混淆 向量積可以被zhi定義為 向量a 向量b a daob sin 在這裡...

mapinfo中怎麼知道有多少個點

不知道我的理解對不對。如果是要把屬性欄位該成另乙個名字。可以這樣 表 維護 表結構,出現乙個對話方塊,選擇你要修改的表,之後就會有所有的屬性欄位 字元型別和欄位長度的乙個列表,可以在這裡改屬性欄位的名字。如果欄位裡的值都是一致的可以這樣改,表 更新列,會出乙個對話方塊,選擇你要修改的表,欄位名稱,獲得值...

知道函式圖象的點的座標怎麼求函式解析式

看你是直線還是拋物線 直線的話y ax b 有兩個點直接代入就可以求出ab解決 拋物線的話內y ax 2 bx c 也是容代入兩個點求未知數。但要觀察曲線是不是還有其他隱藏的條件,比如過不過原點等等 有具體題目比較好說,謝謝採納 你應bai該知道函式解析式的形式才du行 如果是一次zhi函式,那麼函...