高中數學聯賽與高中數學奧林匹克競賽有什麼區別

2021-03-21 23:32:21 字數 5399 閱讀 4683

1樓:學雅思

一、考試組織方不同

1、高中數學聯賽:全國高中數學聯合競賽是中國高中數學學科的較高等級的數學競賽,其地位遠高於各省自行組織的數學競賽。在這項競賽中取得優異成績的全國約400名學生有資格參加由中國數學會主辦的中國數學奧林匹克。

2、高中數學奧林匹克競賽:國際數學奧林匹克作為一項國際性賽事,由國際數學教育專家命題,出題範圍超出了所有國家的義務教育水平,難度大大超過大學入學考試。

二、舉辦作用不同

1、高中數學聯賽:在高中數學聯賽中成績優異的60名左右的學生可以進入國家集訓隊。經過集訓隊的選拔,將有6名錶現最頂尖的選手進入中國國家代表隊,參加國際數學奧林匹克

2、高中數學奧林匹克競賽:奧數對青少年的腦力鍛鍊有著一定的作用,可以通過奧數對思維和邏輯進行鍛鍊,對學生起到的並不僅僅是數學方面的作用,通常比普通數學要深奧些。

三、考試形式不同

1、高中數學聯賽:在競賽中對同樣的知識內容的理解程度與靈活運用能力,特別是方法與技巧掌握的熟練程度,有更高的要求。而「課堂教學為主,課外活動為輔」是必須遵循的原則。

2、高中數學奧林匹克競賽:參賽選手必須是不超過20歲的中學生,每支代表隊有學生6人;另派2名數學家為領隊。試題由各參賽國提供,然後由東道國精選後提交給主試委員會表決,產生6道試題。

2樓:質心教育

數學奧林匹克流程:預賽——聯賽——決賽

1. 預賽的時間在6月份,全國在校高中生均可報名參加,考試形式為筆試,試題難度略高於高考。數學競賽預選賽在各地學校舉行,通過預賽並拿到一定名次的同學可晉級參加複賽。

預賽只是挑選有資格參加複賽的考生,不產生任何獎項,對於自主招生沒有實質性作用。

2. 通過預賽的同學在9月初可以參加複賽,複賽的難度大於預賽。和生物競賽、物理競賽有所不同,數學競賽沒有實驗專案,筆試成績是最終排名的唯一依據。

3. 決賽的時間一般在當年的11月,考試形式和複賽相同,依舊只有筆試。決賽難度遠大於複賽。

決賽的只有200人左右。這200人將會決出金牌、銀牌、銅牌,也就是我們通常所稱的國家一等獎(國一),國家二等級(國二),國家三等獎(國三)。這些同學可以選擇和名校簽約,有的能降30分,有的能降50分,其中排名前60的同學將會入選國家集訓隊,獲得保送資格。

3樓:匿名使用者

前者是市內省內國內3檔範圍,後者是世界範圍。

4樓:

1、全國高中數學聯賽的競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識範圍和方法,在方法的要求上略有提高。

2、 聯賽分為一試、加試(即俗稱的「二試」)。各個省份自己組織的「初賽」、「初試」、「複賽」等等,都不是正式的全國聯賽名稱及程式。

一試和加試均在每年10月中旬的第一個週日舉行。

一試考試時間為上午8:00-9:20,共80分鐘。試題分填空題和解答題兩部分,滿分120分。其中填空題8道,每題8分;解答題3道,分別為16分、20分、20分。

加試(二試)

考試時間為9:40-12:10,共150分鐘。試題為四道解答題,前兩道每題40分,後兩道每題50分,滿分180分。試題內容涵蓋平面幾何、代數、數論、組合數學等。

5樓:老馬揚蹄

全國高中數學聯合競賽是中國高中數學學科的較高等級的數學競賽,其地位遠高於各省自行組織的數學競賽。在這項競賽中取得優異成績的全國約200名學生有資格參加由中國數學會主辦的中國數學奧林匹克(cmo)。在cmo中成績優異的60名左右的學生可以進入國家集訓隊。

經過集訓隊的選拔,將有6名錶現最頂尖的選手進入中國國家代表隊,參加國際數學奧林匹克(imo)。

全國高中數學競賽一等獎有什麼作用

6樓:質心教育

全國高中數學競賽一等獎,可以通過清北夏令營或金秋營等考試提前簽約或者是降分,如果未能取得,也可以復旦大學、浙江大學等名校的自主招生考試。

高中數學奧林匹克競賽都考哪些內容

7樓:匿名使用者

高中數學競賽(全國高中數學聯賽)大綱(2023年修訂版)中國數學會普及工作委員會制定(2023年8月第14次全國數學普及工作會議討論通過) 從2023年中國數學會普及工作委員會舉辦全國高中數學聯賽以來,在「普及的基礎上不斷提高」的方針指引下,全國數學競賽活動方興未艾,每年一次的競賽活動吸引了廣大青少年學生參加。2023年我國又步入國際數學奧林匹克殿堂,加強了數學課外教育的國際交流,20年來我國已躋身於國際數學奧林匹克強國之列。數學競賽活動對於開發學生智力、開拓視野、促進教學改革、提高教學水平、發現和培養數學人才都有著積極的作用。

這項活動也激勵著廣大青少年學習數學的興趣,吸引他們去進行積極的探索,不斷培養和提高他們的創造性思維能力。數學競賽的教育功能顯示出這項活動已成為中學數學教育的一個重要組成部分。 為了使全國數學競賽活動持久、健康地發展,中國數學會普及工作委員會於2023年制定了《高中數學競賽大綱》。

這份大綱的制定對高中數學競賽活動的開展起到了很好的指導作用,使我國高中數學競賽活動日趨規範化和正規化。 近年來,課程改革的實踐,在一定程度上改變了我國中學數學課程的體系、內容和要求。同時,隨著國內外數學競賽活動的發展,對競賽試題所涉及的知識、思想和方法等方面也有了一些新的要求。

為了使新的《高中數學競賽大綱》能夠更好地適應高中數學教育形勢的發展和要求, 經過廣泛徵求意見和多次討論, 中國數學會普及工作委員會組織了對《高中數學競賽大綱》的修訂。 本大綱是在教育部2023年 《全日制普通高階中學數學教學大綱》的精神和基礎上制定的。該教學大綱指出:

「要促進每一個學生的發展,既要為所有的學生打好共同基礎,也要注意發展學生 的個性和特長;……在課內外教學中宜從學生的實際出發,兼顧學習有困難和學有餘力的學生,通過多種途徑和方法,滿足他們的學習需求,發展他們的數學才能 。」 學生的數學學習活動應當是一個生動活潑、富有個性的過程,不應只限於接受、記憶、模仿和練習,還應倡導閱讀自學、自主探索、動手實踐、合作交流等學習數學的 方式,這些方式有助於發揮學生學習的主動性。教師要根據學生的不同基礎、不同水平、不同興趣和發展方向給予具體的指導。

教師應引導學生主動地從事數學活 動,從而使學生形成自己對數學知識的理解和有效的學習策略。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交 流的過程中真正理解和掌握基本的數學知識與技能、數學的思想和方法,獲得廣泛的數學活動經驗。對於學有餘力並對數學有濃厚興趣的學生,教師要為他們設定一 些選學內容,提供足夠的材料,指導他們閱讀,發展他們的數學才能。

教育部2023年 《全日制普通高階中學數學教學大綱》中所列出的內容,是教學的要求,也是競賽的基本要求。在競賽中對同樣的知識內容,在理解程度、靈活運用能力以及方法與 技巧掌握的熟練程度等方面有更高的要求。「課堂教學為主,課外活動為輔」也是應遵循的原則。

因此,本大綱所列的內容充分考慮到學生的實際情況,旨在使不同 程度的學生都能在數學上得到相應的發展,同時注重貫徹」少而精」的原則。 全國高中數學聯賽 全國高中數學聯賽(一試)所涉及的知識範圍不超出教育部2023年《全日制普通高階中學數學教學大綱》中所規定的教學要求和內容,但在方法的要求上有所提高。 全國高中數學聯賽加試 全國高中數學聯賽加試(二試)與國際數學奧林匹克接軌,在知識方面有所擴充套件;適當增加一些教學大綱之外的內容,所增加的內容是:

1.平面幾何 幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆鬆定理。

三角形中的幾個特殊點:旁心、費馬點,尤拉線。 幾何不等式。

幾何極值問題。 幾何中的變換:對稱、平移、旋轉。

圓的冪和根軸。 面積方法,複數方法,向量方法,解析幾何方法。 2.

代數 周期函式,帶絕對值的函式。 三角公式,三角恆等式,三角方程,三角不等式,反三角函式。 遞迴,遞迴數列及其性質,一階、二階線性常係數遞迴數列的通項公式。

第二數學歸納法。 平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函式。 複數及其指數形式、三角形式,尤拉公式,棣莫弗定理,單位根。

多項式的除法定理、因式分解定理,多項式的相等,整係數多項式的有理根*,多項式的插值公式*。 n次多項式根的個數,根與係數的關係,實係數多項式虛根成對定理。 函式迭代,簡單的函式方程* 3.

初等數論 同餘,歐幾里得除法,裴蜀定理,完全剩餘類,二次剩餘,不定方程和方程組,高斯函式[x],費馬小定理,格點及其性質,無窮遞降法,尤拉定理*,孫子定理*。 4.組合問題 圓排列,有重複元素的排列與組合,組合恆等式。

組合計數,組合幾何 抽屜原理 容斥原理 極端原理 圖論問題 集合的劃分 覆蓋 平面凸集、凸包及應用*

8樓:匿名使用者

立體幾何數列數形結合思想 直線和圓的方程 建模概論「設而不求」的未知數題幾個重要不等式,柯西不等式等差數列與等比數列指數函式、對數函式函式的最大值和最小值題平面三角 平面幾何四個重要定理幾何變換 高中數學競賽大綱一試全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識範圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。 二試1、平面幾何 基本要求:掌握初中數學競賽大綱所確定的所有內容。

補充要求:面積和麵積方法。 幾個重要定理:

梅涅勞斯定理、塞瓦定理、托勒密定理、西姆鬆定理。 幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。

到三角形三頂點距離的平方和最小的點--重心。三角形內到三邊距離之積最大的點--重心。 幾何不等式。

簡單的等周問題。瞭解下述定理: 在周長一定的n邊形的集合中,正n邊形的面積最大。

在周長一定的簡單閉曲線的集合中,圓的面積最大。 在面積一定的n邊形的集合中,正n邊形的周長最小。 在面積一定的簡單閉曲線的集合中,圓的周長最小。

幾何中的運動:反射、平移、旋轉。 複數方法、向量方法。

平面凸集、凸包及應用。 2、代數 在一試大綱的基礎上另外要求的內容: 周期函式與週期,帶絕對值的函式的影象。

三倍角公式,三角形的一些簡單的恆等式,三角不等式。 第二數學歸納法。 遞迴,一階、二階遞迴,特徵方程法。

函式迭代,求n次迭代,簡單的函式方程。 n個變元的平均不等式,柯西不等式,排序不等式及應用。 複數的指數形式,尤拉公式,棣莫佛定理,單位根,單位根的應用。

圓排列,有重複的排列與組合,簡單的組合恆等式。 一元n次方程(多項式)根的個數,根與係數的關係,實係數方程虛根成對定理。 簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函式,費馬小定理,尤拉函式,孫子定理,格點及其性質。

3、立體幾何 多面角,多面角的性質。三面角、直三面角的基本性質。 正多面體,尤拉定理。

體積證法。 截面,會作截面、表面圖。 4、平面解析幾何 直線的法線式,直線的極座標方程,直線束及其應用。

二元一次不等式表示的區域。 三角形的面積公式。 圓錐曲線的切線和法線。

圓的冪和根軸。 5、其它 抽屜原理。 容斤原理。

極端原理。 集合的劃分。 覆蓋。

高中數學求解,高中數學求解

你好,怎麼說了大概看了一下,其實很簡單,就是不知道,那些亂七八糟的線是誰畫上去的。減掉那些沒用的,可能會簡單明瞭很多。我時間很緊,直接告訴你最後答案 詳情有時間談談,可以聯絡我。高中 數學 高中數學。a版與b版在同一copy模組知識內容上有所bai不同。如必修2中第一章du 空間幾何體 中有zhi關...

2019河南賽區全國高中數學聯賽獲獎名單

河南的暫時還沒公佈到部落格上,再過段時間才能有 請問2009高中數學聯賽 河南賽區 獲獎名單 全國高中數學聯賽證書,是國家獎還是省獎 是國家獎。全國高中數學聯合競賽是中國高中數學學科的較高等級的數學競賽,其地位遠高於各省自行組織的數學競賽。在這項競賽中取得優異成績的全國約400名學生有資格參加由中國...

高中數學計算,高中數學計算

1 sin 3 2 tan 3 3 sec 2 cos 1 2 cot 3 csc 2 3 2 sin90 1 cos180 1 cos0 1 3 cot270 0 sin180 0 cos90 0 csc270 1 4 sin 4 cos 4 sin cos sin cos sin cos 1 阿...