1樓:趙星宇
在容量為n的總體中,假設我們已經通過隨機抽樣的方式獲得了一份容量為n的樣本資料。現在我們有兩個任務需要完成:一是歸納樣本本身這n個資料之間的分佈狀況;二是藉助該樣本來推測總體的分佈狀況,亦即嘗試以區域性推測總體、以偏概全。
出於簡便的考慮,我們經常僅僅藉助均值和方差這兩個指標來簡略地描述樣本或總體的分佈狀況。則對於第一項任務而言,為準確描述樣本資料間的離散程度,樣本方差計算公式中的除數應為"n」。類似地,為準確描述總體資料間的離散程度,總體方差計算公式中的除數應為"n」。
然而,如果我們準備藉助樣本方差來推測總體的方差,則可以證明:以"n」為除數的樣本方差計算公式不是總體方差的無偏估計值計算式,而只有以"n-1」為除數的樣本方差計算公式才是總體方差的無偏估計值計算式。因此在推斷統計領域,樣本方差計算式的除數應為"n-1」,而不應為"n」。
當然,在n足夠大的時候,樣本方差這兩種計算方法之間的差異可以忽略不計。
最後,我將上述闡述歸納如下:
1. 設若總體資料已知,則該總體的數字特徵不存在推測的問題,只存在描述的問題,是故總體方差計算公式中的除數應為"n」。
2. 以"n-1」為除數的樣本方差計算公式是總體方差的無偏估計值計算式。
3. 以"n」為除數的樣本方差計算公式是總體方差的漸近無偏估計值計算式。
4. 如果只是要描述樣本資料間的離散程度,則樣本方差計算公式中的除數應為"n」。
5. 當n足夠大的時候,不必太在意樣本方差計算公式中除數的這兩種不同的選擇。
6. 在多數場合,習慣上總是採用以"n-1」為除數的樣本方差計算方式。
論證如下:
向左轉|向右轉
向左轉|向右轉
2樓:a馬玉敏
這個需要請教專業的老師才可以知道。
3樓:翦嫻示朝雨
n個資料,就是n分之一
4樓:夏之心夢
為什麼樣本方差的分母為n-1而不是n?
樣本方差與樣本均值,都是隨機變數,都有自己的分佈,也都可能有自己的期望與方差(由此進一步討論估計量的無偏性與有效性)。取分母n-1,可使樣本方差的期望等於總體方差,即這種定義的樣本方差是總體方差的無偏估計。
這樣看,x1,x2,...xn是n個可以自由變化的樣本,互不影響。
而x1-xbar, x2-xbar,...xn-xbar是否也是n個自由變化的呢?不是……因為這n個統計量受到一個約束條件的影響就是之和等於0。
如果我們記 yi=xi-xbar,也就是說y1+y2+...yn=0,這樣我們可以任意變動其中n-1值,比如取定了y1,y2,...y(n-1),那麼yn就不能任意變化,yn=-(y1+y2+y(n-1))。
這個只是從自由變化的角度直觀解釋,實際上證明分佈比較煩瑣……
舉個例子:
比如說讓十跟人任意取十個數,很容易理解可以隨便取.十個都是自由的.
如果我加一個條件,十個人取十個數,但是這是個書加起來必須得零.第一個人可以隨便取,第二個人也可以,第九個也可以,都是自由的,但是第十個人不能隨便自由取,只能取特定的數,才能保證這十個數的和是零.所以加了一個條件就丟了一個自由度
由於有一個約束條件,所以最後一個變數不能隨便取。為了滿足這個約束條件,第n個變數不能隨機取值,它的值由前n-1個變數確定了。問題是:
雖然第n個變數不能隨機取,假設取10以滿足約束條件,但10與均值的離差仍然存在。分子中,包括了這個離差平方,但分母卻不考慮它。
是不是可以這樣理解:按照方差的「定義」,分母仍應取n。只是為了保證無偏性,對樣本方差進行調整。
通過計算,分母應當取n-1。這時的方差實際是「調整後的樣本方差」,只不過我們仍將它叫做「樣本方差」。
用樣本去估計總體,當然就要評估估計的好壞如何。第一個評估方面就是先要評估這個估計是有偏估計還是無偏估計,無偏估計更為有效。除以n所得到的樣本方差雖然也是總體方差的估計量,但是不是無偏估計量,而除以n-1所得到的樣本標準方差則是無偏估計量。
正因為除以n-1所得到的樣本標準方差是總體的無偏估計,所以它更科學點,誤差小些。之所以選擇n-1,不是巧合,而是數學推導下的結果。
摘自itpub bestsong的博文:為什麼樣本方差的分母為n-1而不是n?
5樓:何涵昊
其實很容易理解,下面給出推理過程。滿意請採納,謝謝!
樣本方差為什麼除以n-1
6樓:楓橋映月夜泊
為了保持標準偏差的無偏性。
換句話說,除以(n-1)後,樣本標準偏差的期望 = 總體的標準差.是無偏估計。
但除以n後,樣本標準差的期望 不等於 總體的標準差.是有偏估計。
如圖:拓展資料
先求出總體各單位變數值與其算術平均數的離差的平方,然後再對此變數取平均數,就叫做樣本方差。樣本方差用來表示一列數的變異程度。樣本均值又叫樣本均數。即為樣本的均值。
均值是指在一組資料中所有資料之和再除以資料的個數。
7樓:心雨潔思
在容量為n的總體中,假設我們已經通過隨機抽樣的方式獲得了一份容量為n的樣本資料。現在我們有兩個任務需要完成:一是歸納樣本本身這n個資料之間的分佈狀況;二是藉助該樣本來推測總體的分佈狀況,亦即嘗試以區域性推測總體、以偏概全。
出於簡便的考慮,我們經常僅僅藉助均值和方差這兩個指標來簡略地描述樣本或總體的分佈狀況。則對於第一項任務而言,為準確描述樣本資料間的離散程度,樣本方差計算公式中的除數應為"n」。類似地,為準確描述總體資料間的離散程度,總體方差計算公式中的除數應為"n」。
然而,如果我們準備藉助樣本方差來推測總體的方差,則可以證明:以"n」為除數的樣本方差計算公式不是總體方差的無偏估計值計算式,而只有以"n-1」為除數的樣本方差計算公式才是總體方差的無偏估計值計算式。因此在推斷統計領域,樣本方差計算式的除數應為"n-1」,而不應為"n」。
當然,在n足夠大的時候,樣本方差這兩種計算方法之間的差異可以忽略不計。
最後,我將上述闡述歸納如下:
1. 設若總體資料已知,則該總體的數字特徵不存在推測的問題,只存在描述的問題,是故總體方差計算公式中的除數應為"n」。
2. 以"n-1」為除數的樣本方差計算公式是總體方差的無偏估計值計算式。
3. 以"n」為除數的樣本方差計算公式是總體方差的漸近無偏估計值計算式。
4. 如果只是要描述樣本資料間的離散程度,則樣本方差計算公式中的除數應為"n」。
5. 當n足夠大的時候,不必太在意樣本方差計算公式中除數的這兩種不同的選擇。
6. 在多數場合,習慣上總是採用以"n-1」為除數的樣本方差計算方式。
論證如下:
同學不理解的地方可以繼續提問哦》0《滿意的話請採納吧^-^
8樓:星
如果只計算這些樣本的偏差,那麼直接除以n。如果要反推整個系統的偏差,就除以n-1.
因為抽樣計算的平均值肯定跟全部系統整體資料平均有差別,均方差也會有差別。要估算的話,根據概率分佈等公式擬合反推, n-1是比較吻合的(資料比較多時)
9樓:鎮美媛革鶯
自由度的問題。在n箇中隨機選,選了n-1個,剩下的一個是確定的了,不能再選。所以除n-1,小生才疏學淺,還望拋磚引玉。嘿嘿,我們認識不誒,mai生人
樣本方差為什麼除以的是n-1~?
10樓:匿名使用者
這是一個人為的結果 為了保證無偏性
11樓:匿名使用者
顯然,樣本均值-x1,樣本均值-x2,……,樣本均值-xn,之間有一線性關係:(樣本均值-x1)+(樣本均值-x2)+……+(樣本均值-xn)= 0
12樓:匿名使用者
有沒有大神能夠推到公式一記?當初上課的時候老師好像推到過一次,可惜沒留下筆記。。。
13樓:宰宇蔭叢妞
小樣本應該用n-1,大樣本應該用n用n-1主要是為了無偏性
為什麼樣本方差的分母是 n-1
14樓:何涵昊
其實很容易理解,下面給出推理過程。滿意請採納,謝謝!
概率論數理統計 樣本方差的分母為什麼是n-1而不是n
15樓:匿名使用者
因為在計算樣本方差的時候
首先要求出平均值
那麼就是由這n個數相加
再除以n,得到的其自由度就是1
然後再來計算方差
每個數都要減去平均值,再平方相加
於是其自由度為n-1
分母就是n-1即可
計量經濟學中的樣本方差的分母為什麼是n-1,而不是n呢?
16樓:匿名使用者
樣本方差中的n是選取的個體數量,但方差是變數與樣本均值差的平方和的均值,版
是統計一種「數量差」的權概念,有兩個數能產生一個「數量差」,有三個數能產生兩個「數量差」,選取總體的n個數是「數量差」的個數為n-1個,所以樣本方差的分母只能是n-1,不能是n。
總體方差是反映總體的變化均值,總體有多少算多少,所以為分母為n。
17樓:匿名使用者
如果你經過來一次詳細的推導自
可以得到n-1做分母的式子,理論原因是由於樣本方差
不向總體方差,總體方差你直接用n做分母就是對的,但是樣本方差不是讓你就算出樣本方差來,而是用樣本方差來估計總體方差,如果用n做分母那麼算出的方差不是無偏估計,也就是說n做分母的樣本方差的期望值不等於總體方差的期望值,那就更談不上什麼有效性,只有當分母是n-1的時候樣本方差才是無偏的,才能夠反映總體方差.但是如果樣本空間足夠大,也就是說n足夠大,那麼分母用n還是n-1其實相差無幾,具體n取多少是大,你可以用t檢驗來檢驗一下~
計量經濟學中的樣本方差的分母為什麼是n 1,而不是n呢
樣本方差中的n是選取的個體數量,但方差是變數與樣本均值差的平方和的均值,版 是統計一種 數量差 的權概念,有兩個數能產生一個 數量差 有三個數能產生兩個 數量差 選取總體的n個數是 數量差 的個數為n 1個,所以樣本方差的分母只能是n 1,不能是n。總體方差是反映總體的變化均值,總體有多少算多少,所...
1米的五分之一和三米的五分之一一樣大麼,為什麼
1米的五分之一是0.2米 三米的五分之一是0.6米 不一樣大,1米的1 5是1 5米,而3米的1 5是3 5米,因為它們的基準不一樣,就是它們的單位一代表的數不一樣。判斷 1米的五分之三和3米的五分之一,一樣長。對不對呢?是一樣的。都是五分之三米 都是60釐米 應該沒有其他理由能否決這個真理了 1 ...
3米的七分之一與1米的七分之三一樣長判斷對錯
對3米的七分之一是3 7米 1米的七分之三也是3 7米,所以相等。三米的七分之一和一米的七分之三是不是一樣長的 是一樣長的,都是長七分之三米。解析 3米的7分之1,就是把3米平均分成7份,取這樣的1份,所以3米的7分之1長 3 7分之1 7分之3 米 1米的7分之3,就是把1米平均分成7份,取這樣的...