1樓:傑哥的
**性方程組
bai裡基礎解系線性無du關,在特徵
zhi向量裡重根對應的特dao徵向量卻不一定線性回無答關。
一般情況下求特徵值對應的特徵向量都是求對應的線性方程組的線性無關的解(即基礎解系),求基礎解系的時候是把自由變數取了一組線性無關的值得出來的,但如果取的不是線性無關的,那麼對應的特徵向量(方程組的解)也就不一定是線性無關的了。
擴充套件資料
線性方程組有以下兩種解法:
1、克萊姆法則:用克萊姆法則求解方程組有兩個前提,一是方程的個數要等於未知量的個數,二是係數矩陣的行列式要不等於零。
用克萊姆法則求解方程組實際上相當於用逆矩陣的方法求解線性方程組,它建立線性方程組的解與其係數和常數間的關係,但由於求解時要計算n+1個n階行列式,其工作量常常很大,所以克萊姆法則常用於理論證明,很少用於具體求解。
2、矩陣消元法:將線性方程組的增廣矩陣通過行的初等變換化為行簡化階梯形矩陣 ,則以行簡化階梯形矩陣為增廣矩陣的線性方程組與原方程組同解。當方程組有解時,將其中單位列向量對應的未知量取為非自由未知量,其餘的未知量取為自由未知量,即可找出線性方程組的解。
2樓:紀密立
其實17年的那來個回答已經說得源
很不錯了,bai這裡加上我自du己的理解方式:
1、大家都知道
zhi」重dao根所對應的特徵向量的形式是由基礎解系所組成的,例如k*a +m*b(k,m不同時等於0)這種形式「。。。。。所以這也就意味著「重根的數量與其所對應的線性無關的解向量的個數這兩者之間是直接影響著特徵向量的相關性」。如下分析:
2、當重根的個數等於其線性無關的解向量的個數時,那麼特徵向量就無關,因為這時候對於每一個重根而言都可以分別取一個線性無關的解向量,故自然也就線性無關。。。。。而當兩者個數不等時(此時一定有重根個數大於解向量的個數),重根中的某個根所對應的特徵向量必然是線性無關的解向量的組合形式,所以自然就線性相關。
3樓:實實多才
你的問題我也研究過,你的誤區在於你沒把特徵向量搞懂,重根的特徵向量求回解是與方程組相同的,答但重根的基礎解系向量個數是不定的...也就是說若重根對應的基礎解系向量個數為2,那麼向量之間就線性無關,特徵向量就線性無關,但重根對應的基礎解系向量個數為1,那麼特徵向量就線性相關
4樓:匿名使用者
**性方程組裡基抄礎解系線性無bai關,
特徵向量du裡重根對應的特徵向量卻不zhi一定線dao性無關,一般情況下我們求特徵值對應的特徵向量都是求對應的線性方程組的線性無關的解(即基礎解系),我們求基礎解系的時候是把自由變數取了一組線性無關的值得出來的,但如果你取的不是線性無關的,那麼對應的特徵向量(方程組的解)也就不一定是線性無關的了。
何為特徵向量?我們在求特徵向量時是先求基礎解系的,那麼那個基礎解系按理說一定線性無關,特徵向量也一定是線性無關的,你說的是不可能的。因為求出來的基礎解系就是線性無關的特徵向量啊。
為什麼一個特徵值不能對應兩個線性無關的特徵向量?
5樓:匿名使用者
請你找一本線性代數課本(數學專業用),其中有一個定理:對於矩陣a的特徵值λ
。代數重數≥幾何重數。
(代數重數是特徵值λ作為特徵方程的根的重數。
幾何重數是特徵值λ所對應的特徵子空間的維數。即λ對應的線性無關的特徵向量的個數。)
這個定理的證明不太麻煩。但是這裡還是寫不出。
順便說一句,a相似於對角陣的充要條件正是:
對於a的每個特徵值,總有:代數重數=幾何重數。
對稱矩陣必相似於對角陣,總有:代數重數=幾何重數
為什麼不同特徵值對應的特徵向量一定線性無關?還有怎麼判斷一個n階矩陣有n個線性無關的特徵向量?
6樓:匿名使用者
特徵值a的幾何重數就是 n-r(a-ae)
也就是齊次線性方程組 (a-ae)x=0 的基礎解系所含向量的個數
幾何重數不超過代數重數
7樓:電燈劍客
對於不同特徵值對應的特徵向量的無關性,直接用線性無關的定義,藉助vandermonde行列式即可
至於幾何重數的具體資訊,從jordan標準型裡直接可以讀出來
1.矩陣不同的特徵值對應的特徵向量一定線性無關嗎 2.相同特徵值對應的特徵向量會不會線性無關
8樓:小樂笑了
1、矩陣不同
的特徵值對應的特徵向量一定線性無關
證明如下:
假設矩陣a有兩個不同特徵值k,h,相應特徵向量是x,y其中x,y線性相關,不妨設y=mx,因此,得到ax=kx【1】
ay=hy=hmx
即amx=hmx【2】
而根據【1】有
amx=kmx【3】
【2】-【3】,得到
0=(h-k)mx
由於特徵向量x非零向量,而h,k兩個特徵值不相同,即h-k不為0則m=0,則y=mx=0,這與特徵向量非零向量,矛盾!
因此假設不成立,從而結論得證
2、相同特徵值對應的特徵向量不一定線性無關因為,某個特徵值的一個特徵向量的非零倍數,也是該特徵值的特徵向量但兩個特徵向量,因為是倍數關係,因此是線性相關的。
又例如,如果一個特徵值,相應特徵方程解出來,基礎解系中有多個解向量,這些解向量是線性無關的,且都是此特徵值的特徵向量。
9樓:你好丶吊
特徵值不同 是 特徵向量線性無關的 充分不必要條件。
1.充分條件很容易理解。
2.必要條件的理解。
由對稱矩陣的性質可得:k重特徵值必有k個線性無關的特徵向量。
也就是說:對於對稱矩陣,無論有沒有相同的特徵值,它的特徵向量都是線性無關的。所以由後邊不能推到前邊。
10樓:2048人
1. 是
2. 可能會
同一特徵值對應的特徵向量線性無關嗎
11樓:是你找到了我
同一特徵值對應的特徵向量不一定線性無關;不同特徵值對應的特徵向量線性無關。
求矩陣的全部特徵值和特徵向量的方法如下:
1、計算的特徵多項式;
2、求出特徵方程的全部根,即為的全部特徵值;
3、對於的每一個特徵值,求出齊次線性方程組的一個基礎解系,則可求出屬於特徵值的全部特徵向量。
需要注意的是:若是的屬於的特徵向量,則也是對應於的特徵向量,因而特徵向量不能由特徵值惟一確定;反之,不同特徵值對應的特徵向量不會相等,亦即一個特徵向量只能屬於一個特徵值。
12樓:匿名使用者
你好!提問不是很清楚,例如二階單位陣e的特徵值1有無窮多個特徵向量,其中任意三個以上的特徵向量都是線性相關的;但是,特徵向量(1,0)^t與(0,1)^t是線性無關的,而任何單獨一個特徵向量也是線性無關的。經濟數學團隊幫你解答,請及時採納。謝謝!
13樓:週三心盼
若a1,...,as 是a的屬於同一個特徵值的特徵向量則其非零線性組合 k1a1+...+ksas 也是a的屬於此特徵值的特徵向量
某個特徵值的全部特徵向量是對應齊次線性方程組的基礎解系的非零線性組合所以一般線性相關
特徵值是n重根,那對應的特徵向量的基礎解系就有幾個。這句話對嘛?如果不對是為什麼
這句話是不對的。原因 若矩陣可對角化,那麼則說明了特徵值的n重根所專對應的基礎解系的屬與線性無關的特徵向量的個數為n 若矩陣不能對角化,那麼說明對應的與基礎解系線性無關的特徵向量的個數就是小於n的,所以這句話是錯誤的。具體情況要根據實際情況來進行判定。在數學上,矩陣是指縱橫排列的二維資料 最早來自於...
為什麼實對稱矩陣的特徵向量一定可以正交化
設 1,2是兩個a的不同特徵值,1,2分別是其對應的特徵向量 根據特徵值和特徵向量的定義有a 1 1 1,a 2 2 2 分別取轉置,以及兩邊右乘 2和 1,得 1 a 2 2 1 2,2 a 1 1 2 1 兩式相減並,得到 2 a 1 2 a 1 1 a 2 所以 1 2 1 2 1 a 2 2...
單根特徵值為什麼不能有兩個線性無關的特徵向量
如果 是單根,則不可能有 n r a e 1 定理 k重特徵值最多有k個線性無關的特徵向量 為什麼一個特徵值不能對應兩個線性無關的特徵向量?請你找一本線性代數課本 數學專業用 其中有一個定理 對於矩陣a的特徵值 代數重數 幾何重數。代數重數是特徵值 作為特徵方程的根的重數。幾何重數是特徵值 所對應的...