用微分的近似計算tan136的近似值為什麼得到了

2022-03-16 21:49:58 字數 5464 閱讀 3774

1樓:瀧之桃閩睿

難道這個演算法不正確?這個演算法確實不精確,但這是正確的近似演算法..

一般地,有:f(x0+△x)≈f(x0)+f'(x0)*△x,令f(x)=tanx,x0=135°,△x=1°,代入上式,有:

tan136°≈tan135°+tan'135°*1°,tan'(x)=1/[cos(x)^2],tan'135°=2,

tan136°≈tan135°+tan'135°*1°=-1+2°,2°=3.14*2/180=0.03可忽略,因此tan136°約等於-1

2樓:完顏琇瑩城毅

角度和弧度在這裡是完全等價的,就像千克和克一樣,

這也沒有改變△x的意義,無論是1°還是∏/180都是一個可忽略的小量..

1°在任何情況下都等於∏/180..

3樓:昔書文倪浩

你好!tan(136°)=-tan(44°)=-tan(45°-1°):=-[tan(45°)-tan'(45°)*pi/180]=

-[1-2*pi/180]=-甫腸顛段郯燈奠犬訂華0.9651

希望對你有所幫助,望採納。

大學理工科專業都要學高等數學嗎?有哪些專業不學?

4樓:匿名使用者

建築學專業不用學高等數學,只是學一下比較簡單的文科數學。

5樓:匿名使用者

理工科都要學的

數學是計算機的核心的知識

計算機學院很喜歡數學好的學生

就是文科好象都很少有不學的!

6樓:琪緣飄雪

當然了,這還用問嗎。工科專業學的就是理工類,怎麼可能沒有高數,而且高數還是最基礎的學科,進大一就得學。這是必須的,除非你選文課,那就不用學高數了。

電腦科學與技術 更得用到高數了,除此以外還得學離散數學,線性代數,概率論等關係數學的科目。

7樓:烏拉媽媽

還有藝術類,我們藝術設計連語文都不學了,不知道有沒有 不用學政治的

8樓:匿名使用者

高數是必修的,只有很少幾個專業可以不學!英語專業,法律專業,體育專業可以不學!

高等數學,理工學科,考研 請問等價無窮小用在加減法裡面什麼是達到精度 10

9樓:

等價無窮小,比值是1,他們其實一樣的,可以互相替換

10樓:司空念音

達到精度的意思就是,用等價無窮小替換之後是否跟原來的項精度相同,這裡的精度指的是階數,兩個項都是2階無窮小,就說達到了精度,可以替換;如果替換之前的項是2階,替換之後變成了1階,就說沒有達到精度,不能替換。

11樓:匿名使用者

你好,文都網校考研( wenduedu )為您服務。

用等價無窮小求極限,其目的是把分子分母趨於0的x的方冪約掉.

若分母中是個x的多項式,關鍵是看x→0時,分母是否趨於0,如果是,那你要提出x的方冪(比如k次),那你想辦把分子變成k次.

一般以高階為準.

分子兩個相減項的問題必須是一個整體才能替換,不能單獨替換.但如果是乘積,就可以單獨替換.

12樓:匿名使用者

o(x^n)-o(x^n)

昆明理工大學 大一期末 求 高數槍手

13樓:匿名使用者

給幾點學習建議:

第一,基礎訓練練習,經常附在每章每節之後。這類問題相對來說比較簡單,無大難度,但很重要,是打基礎部分。知識面廣些不侷限於本章本節,在解決的方法上要用到多種數學工具。

數學的練習是消化鞏固知識極重要的一個環節,舍此達不到目的。

第二,狠抓基礎,循序漸進。任何學科,基礎內容常常是最重要的部分,它關係到學習的成敗與否。高等數學本身就是數學和其他學科的基礎,而高等數學又有一些重要的基礎內容,它關係的全域性。

以微積分部分為例,極限貫穿著整個微積分,函式的連續性及性質貫穿著後面一系列定理結論,初等函求導法及積分法關係到今後個學科。因此,一開始就要下狠功夫,牢牢掌握這些基礎內容。在學習高等數學時要一步一個腳印,紮紮實實地學和練,成功的大門一定會向你開放。

第三,歸類小結,從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結是一個重要方法。

高等數學歸類方法可按內容和方法兩部分小結,以代表性問題為例輔以說明。在歸類小節時,要特別注意有基礎內容派生出來的一些結論,即所謂一些中間結果,這些結果常常在一些典型例題和習題上出現,如果你能多掌握一些中間結果,則解決一般問題和綜合訓練題就會感到輕鬆。

第四,精讀一本參考書。實踐證明,在教師指導下,抓準一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其他參考書就會迎刃而解了。

第五,注意學習效率。數學的方法和理論的掌握,就實踐經驗表明常常需要頻率大於4否則做不到熟能生巧,觸類旁通。人不可能通過一次學習就掌握所學的知

識,需要有幾個反覆。所謂「學而時習之」溫故而知新」都有是指學習要經過反覆多次。高等數學的記憶,必建立在理解和熟練做題的基礎上,死記硬背無濟於事。

在學習的道路上是沒有平坦大道的,可是「學習有險阻,苦戰能過關「。」人生能有幾回搏?「人生總能搏幾回!

」每個學子應當而且能與高等數學「搏一搏」。 想高分,多做練習~想提高能力,多思考~方法要自己掌握~

學習高等數學有什麼用處?

14樓:drar_迪麗熱巴

學習高數的作用:

1、可以

培養思維能力

2、可以應用到其他學科的學習

3、專升本或考研都需要考數學

4、可以提高思維辯證能力,提高獨立思考能力。

高等數學包括:

數學分析:主要包括微積分和級數理論。微積分是高等數學的基礎,應用範圍非常廣,基本上涉及到函式的領域都需要微積分的知識。

級數中,傅立葉級數和傅立葉變換主要應用在訊號分析領域,包括濾波、資料壓縮、電力系統的監控等,電子產品的製造離不開它。

實變函式(實分析):數學分析的加強版之一。主要應用於經濟學等注重資料分析的領域。

複變函式(複分析):數學分析加強版之二。應用很廣的一門學科,在航空力學、流體力學、固體力學、資訊工程、電氣工程等領域都有廣泛的應用,所以工科學生都要學這門課的。

15樓:匿名使用者

1、可以培養思維能力

2、可以應用到其他學科的學習

3、專升本或考研都需要考數學

4、最直接的,期末考試要考,過了才能畢業,才能拿到畢業證

對於高等學校工科類專業的本科生而言,高等數學課程是一門非常重要的基礎課,它內容豐富,理論嚴謹,應用廣泛,影響深遠。

不僅為學習後繼課程和進一步擴大數學知識面奠定必要的基礎,而且在培養學生抽象思維、邏輯推理能力,綜合利用所學知識分析問題解決問題的能力,較強的自主學習的能力,創新意識和創新能力上都具有非常重要的作用。

擴充套件資料

高等數學包括:

數學分析:主要包括微積分和級數理論。微積分是高等數學的基礎,應用範圍非常廣,基本上涉及到函式的領域都需要微積分的知識。

級數中,傅立葉級數和傅立葉變換主要應用在訊號分析領域,包括濾波、資料壓縮、電力系統的監控等,電子產品的製造離不開它。

實變函式(實分析):數學分析的加強版之一。主要應用於經濟學等注重資料分析的領域。

複變函式(複分析):數學分析加強版之二。應用很廣的一門學科,在航空力學、流體力學、固體力學、資訊工程、電氣工程等領域都有廣泛的應用,所以工科學生都要學這門課的。

16樓:匿名使用者

網友發帖詢問高等數學的用途,這個問題回答起來頗為不易,主要原因倒不是用途不清,而是用途太多了,多到這樣文章n篇也說不完的地步。敝人不才,願意拋磚引玉,和大家一起**。

高等數學這個詞是從蘇聯引進的,歐洲作為高等數學的發源地,並沒有這樣的說法。這個高等是相對於幾何(平面、立體,解析)與初等代數而言,從目前的一般高校教學,高等數學主要指微積分。一般理工科本科學生,還需要學習更多一些,包括概率論和數理統計,線性代數,複變函式,泛函分析等等,這些都可以放到高等數學範疇裡面。

當然,這些只是現代數學的最基本的基礎,不過,即使是這個基礎,就可以應付很多現實的任務。

這裡只說說微積分,一言而蔽之,微積分是研究函式的一個數學分支。函式是現代數學最重要的概念之一,描述變數之間的關係,為什麼研究函式很重要呢?還要從數學的起源說起。

各個古文明都掌握一些數學的知識,數學的起源也很多很多,但是一般認為,現代數學直承古希臘。古希臘的很多數學家同時又是哲學家,例如畢達哥拉斯,芝諾,這樣數學和哲學有很深的親緣關係。古希臘的最有生命力的哲學觀點就是世界是變化的(德謨克利特的河流)和亞里斯多德的因果觀念,這兩個觀點一直被人廣泛接受。

前面談到,函式描述變數之間的關係,淺顯的理解就是一個變了,另一個或者幾個怎麼變,這樣,用函式刻畫複雜多變的世界就是順理成章的了,數學成為理論和現實世界的一道橋樑。

微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。這些理論都能解決什麼問題呢?下面先舉兩個實踐中的例子。

舉個最簡單的例子,火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。

為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。

我相信讀者在看這篇文章的時候是在使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。

計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。

這個兩個例子牽扯的數學知識並不太多,但是已經顯示出微積分非常大的力量。實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。

數學是軟體開發的基礎,有許多學數學的最後都轉行搞軟體.

17樓:匿名使用者

對於高等學校工科類專業的本科生而言,高等數學課程是一門非常重要的基礎課,它內容豐富,理論嚴謹,應用廣泛,影響深遠。不僅為學習後繼課程和進一步擴大數學知識面奠定必要的基礎,而且在培養學生抽象思維、邏輯推理能力,綜合利用所學知識分析問題解決問題的能力,較強的自主學習的能力,創新意識和創新能力上都具有非常重要的作用。

數學是研究現實世界數量關係和空間形式的學科.隨著現代科學技術和數學科學的發展,「數量關係」和「空間形式」有了越來越豐富的內涵和更加廣泛的外延.數學不僅是一種工具,而且是一種思維模式; 不僅是一種知識,而且是一種素養; 不僅是一門科學,而且是一種文化.

數學教育在培養高素質科技人才中具有其獨特的、不可替代的作用。

e005用微分近似計算怎麼個過程

設f x e x,則 f 0.05 f 0 0.05 f 0 f 0 0.05 1.05 f 0 0.05 這步的意思就是對當dx 0.05時,dy的值。求解 利用微分近似公式計算e 0.1 的近似值,希望能有詳細過程。解 設y e x,y e x。x 0時,y 1。lim x 0 y x y y ...

用微分作近似計算數三考研需要掌握嗎

用微分作 抄近似計算數並非重點內容,數學三考研可以不進行掌握。對於數學三考研大綱如下 一元函式微分學內容 導數和微分的概念 導數的幾何意義和經濟意義 函式的可導性與連續性之間的關係 平面曲線的切線與法線 導數和微分的四則運算 基本初等函式的導數 複合函式 反函式和隱函式的微分法 高階導數 一階微分形...

程式設計序計算sinx和cosx的近似值 使用如下的臺勞級值

是泰勒級數吧。sinx include include fabs int main printf 8f n s return 0 用泰勒式求sinx 注意x為弧度 還有啥要求hi我。c語言程式設計計算sinx的近似值 10 include stdio.h int main int argc,char...