二次根式的定義和概念,二次根式概念是什麼

2021-05-23 14:57:34 字數 6044 閱讀 1370

1樓:天可充嘉實

1、定抄義:一般地,形如√ā(

襲a≥0)的代數式叫做二次根式。

當a>0時,√ā表示a的算數平方根,√0=0當a小於0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。謝謝

二次根式概念是什麼?

2樓:匿名使用者

如果一個數的平方等於a,那麼這個數叫做a的平方根。a可以是具體的數,也可以是含有字母的代數式。

即:若[**] ,則

[**] 叫做a的平方根,記作x=

[**] 。其中a叫被開方數。其中正的平方根被稱為算術平方根。

關於二次根式概念,應注意:

被開方數可以是數 ,也可以是代數式。被開方數為正或0的,其平方根為實數;被開方數為負的,其平方根為虛數。

性質:1. 任何一個正數的平方根有兩個,它們互為相反數。如正數a的算術平方根是

[**] ,則a的另一個平方根為-

[**] ;最簡形式中被開方數不能有分母存在。

2. 零的平方根是零,即

[**] ;

3. 負數的平方根也有兩個,它們是共軛的。如負數a的平方根是

[**] 。

4. 有理化根式:如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式互為有理化根式,也稱互為有理化因式。

5. 無理數可用有理數形式表示, 如:

[**] 。

3樓:祭純己冰嵐

就是至多隻有平方根的代數式。當然也可以含有整數次方。

4樓:養彥告陽波

不想去全看,就重點看加粗部分

————————————————————————————————————

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

1)a≥0

;√ā≥0

[雙重非負性

]2)(√ā)^2=a

(a≥0)[任何一個非負數都可以寫成一個數的平方的形式]

3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論

1)二次根式√ā的化簡

a(a≥0)

√ā=|a|={

-a(a<0)

2)積的平方根與商的平方根

√ab=√a·√b(a≥0,b≥0)

√a/b=√a

/√b(a≥0,b>0)

3)最簡二次根式

條件:(1)被開方數的因數是整數或字母,因式是整式;

(2)被開方數中不含有可化為平方數或平方式的因數或因式。

如:不含有可化為平方數或平方式的因數或因式的有√2、√3、√a(a≥0)、√x+y

等;含有可化為平方數或平方式的因數或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等

1運演算法則

√a·√b=√ab(a≥0,b≥0)

√a/b=√a

/√b(a≥0,b>0)

二數二次根之積,等於二數之積的二次根。

2共軛因式

如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式叫做共軛因式,也稱互為有理化根式。

1同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。

2合併同類二次根式

把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。

3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併

1確定運算順序

2靈活運用運算定律

3正確使用乘法公式

4大多數分母有理化要及時

5在有些簡便運算中也許可以約分,不要盲目有理化

分母有理化有兩種方法

i.分母是單項式

如:√a/√b=√a×√b/√b×√b=√ab/b

ii.分母是多項式

要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

ii.分母是多項式

要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

————————————————————————————————————

5樓:掌煙波庚

一般地,形如根號a(a≥0)的代數式叫做二次根式。

6樓:牢廷謙籍念

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

1)a≥0

;√ā≥0

[雙重非負性

]2)(√ā)^2=a

(a≥0)[任何一個非負數都可以寫成一個數的平方的形式]3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論1.3是的

例舉幾個

√2√3

√5√7

√6√10

請採納。

7樓:詹耕順儲綾

你好,樓上的解答都有問題,因為本題自身就是錯誤的,請檢查是否抄錯,沒抄錯的話題目本身錯了

因為√3<2,所以√3-2<0

這樣根號下為負數,此根式是無意義的

所以題目有錯

不明白歡迎追問,答題不易,請及時採納,謝謝

二次根式的定義

8樓:drar_迪麗熱巴

一般地,形如√a的代數

式叫做二次根式,其中,a 叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數(在一元二次方程求根公式中,若根號下為負數,則方程有兩個共軛虛根)。

運算如下:

加減法1.同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。 化簡:根號12等於4的根號3

2.合併同類二次根式

把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。

3.二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併。

9樓:開文玉山綾

i.二次根式的定義:

一般地,形如√ā(a≥0)的式子叫做二次根式。

ii.二次根式√ā的簡單性質和幾何意義

1)√ā≥0(a≥0)[

雙非負性質

]2)(√ā)^2=a

(a≥0)[任何一個非負數都可以寫成一個數的平方的形式]

3)√(a^2+b^2)表示平面間兩點之間的距離

iii.二次根式的性質和最簡二次根式

1)二次根式√ā的化簡

a(a≥0)

√ā=|a|={

-a(a<0)

2)積的平方根與商的平方根

√ab=√a·√b(a≥0,b≥0)

√a/b=√a

/√b(a≥0,b≥0)

3)最簡二次根式

條件:(1)被開方數的因數是整數或字母,因式是整式;(2)被開方數中不含有可化為平方數或平方式的因數或因式。

iv.二次根式的乘法和除法

1運演算法則

√a·√b=√ab(a≥0,b≥0)

√a/b=√a

/√b(a≥0,b≥0)

2共軛因式

如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式叫做共軛因式,也稱互為有理化根式。

v.二次根式的加法和減法

1同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。

2合併同類二次根式

把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。

3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併

vi.二次根式的混合運算

確定運算順序

靈活運用運算定律

正確使用乘法公式

分母有理化要及時

10樓:祥雲成龍

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

1)a≥0 ; √ā≥0 [ 雙重非負性 ]2)(√ā)^2=a (a≥0)[任何一個非負數都可以寫成一個數的平方的形式]

3) √(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論1.3是的

例舉幾個 √2 √3 √5 √7 √6 √10

11樓:郭蘭環戌

初中未對根式下定義,只是說明哪些是根式。

形如√ā(a≥0)的代數式叫做二次根式。這是為後續學定義域作準備。

形如-√ā(a≥0)(如-√2)是二次根式,二次根式的加減就有這樣的式子。-√a可解釋為-1乘以√a.它和二次根式的定義沒有矛盾。

二次根式定義,性質,公式,法則

12樓:花降如雪秋風錘

一、定義

如果一個數的平方等於a,那麼這個數叫做a的平方根。a可以是具體的數,也可以是含有字母的代數式。

即:若x^2=a,則±√a叫做a的平方根,記作x=±√a。其中a叫被開方數。其中正的平方根被稱為算術平方根。

關於二次根式概念,應注意:

被開方數可以是數,也可以是代數式。被開方數為正或0的,其平方根為實數;被開方數為負的,其平方根為虛數。

二、性質

1、任何一個正數的平方根有兩個,它們互為相反數。如正數a的算術平方根是√a,則a的另一個平方根為-√a;最簡形式中被開方數不能有分母存在。

2. 零的平方根是零;

3. 負數的平方根也有兩個,它們是共軛的。

4. 有理化根式:如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式互為有理化根式,也稱互為有理化因式。

5. 無理數可用連分數形式表示 。

三、法則

加減法1、同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。 化簡:根號12等於4的根號3

2、合併同類二次根式

把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。

3、二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併。

乘除法二次根式相乘除,把被開方數相乘除,根指數不變,再把結果化為最簡二次根式。

13樓:萵苣姑娘

一般地,形如√a(a≥0)的代數式叫做二次根式,其中,a 叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a不是二次根式(在一元二次方程求根公式中,若根號下為負數,則無實數根)

定義性質和概念編輯

如果一個數的平方等於a,那麼這個數叫做a的平方根。a可以是具體的數,也可以是含有字母的代數式

即:若,則x叫做a的平方根,記作x=

。其中a叫被開方數。其中正的平方根被稱為算術平方根。

關於二次根式概念,應注意:

被開方數可以是數 ,也可以是代數式。被開方數為正或0的,其平方根為實數;被開方數為負的,其平方根為虛數。

性質1.任何一個正數的平方根有兩個,它們互為相反數。如正數a的算術平方根是

,則a的另一個平方根為-

;最簡形勢中被開方數不能有分母存在。

2.零的平方根是零,即

;3.有理化根式:如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式互為有理化根式,也稱互為有理化因式。

運演算法則編輯

乘除法1.積的算數平方根的性質

(a≥0,b≥0)

2. 乘法法則

(a≥0,b≥0)

二次根式的乘法運演算法則,用語言敘述為:兩個因式的算術平方根的積,等於這兩個因式積的算術平方根。

3.除法法則

(a≥0,b>0)

二次根式的除法運演算法則,用語言敘述為:兩個數的算術平方根的商,等於這兩個數商的算術平方根。

二次根式概念,關於二次根式的定義

1.二次du根式的有關概念 1 式子 zhia 0 dao 叫做 二次根式 與 必是版非負數 2 最簡二次根式的條件是權 1 被開方數不含分母 2 被開方數中不含能開得盡方的因式。3 化成最簡二次根式後,被開方數相同。這樣的二次根式 叫做同類二次根式.4 兩個含有根式的代數式相乘,如果它們的積不含有...

根號a是二次根式嗎,那根號a是最簡二次根式嗎

根號a是二次根式 是否是最簡二次根式,需看a,如a中包含分母,或者包含平方因數,那麼就不是,如 根號8,根號0.1等。是二次根式,是最簡二次根式。當a 0時,根號a是二次根式,也是最簡二次根式 根號a是二次根式嗎,那根號a是最簡二次根式嗎 根號a是二次根式 是否是最簡二次根式,需看a,如a中包含分母...

求二次根式意義,二次根式有意義的條件是什麼

兩個相同的數相乘等於另一個數。那這個數的二次開根號,等於前面那個數。2x2 4 2的平方等於4,那4的二次開根號就等於2.希望採納,謝謝。i.二次根式的定義 一般地,形如 a 0 的式子叫做二次根式。ii.二次根式 的簡單性質和幾何意義1 0 a 0 雙非負性質 2 2 a a 0 任何一個非負數都...