怎麼給人講清楚多元函式全微分與偏導數的關係

2021-03-05 09:22:01 字數 5741 閱讀 5062

1樓:pasirris白沙

1、偏導數,partial differentiation,一般是指沿著 x 方向、或 y 方向、

或 z 方向的導數;導數在美語中,喜歡用 derivative。

2、無論是沿著 x、y、z 哪個方向的導數,計算導數的方法,跟一元函式

求導數的方法,完全一樣;對 x 方向求導時,將 y、z 當成常數對待;

3、進一步推廣到任意方向,在任意方向上的導數,稱為方向導數,directional

differentiation,或 directional derivative;

4、方向導數的概念,其實也是偏導數的概念,但是寫成全導數的形式;

5、方向導數寫成全導數 total differentiation 的形式,原因是方向導數的

計算一般是由 x、y、z 三個方向的偏導數的分量 ***ponent 相加而成;

6、全導數,就是全微分,在英文中沒有絲毫區別,導數跟微分的區別是中國

微積分概念,不是國際通用微積分的概念;

7、全微分的意思是 : 函式的的無窮小增量 du,**於三個方向上的無窮小

相加而成,即 du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz。

歡迎追問,歡迎討論,中英文不限。

最好是用英文討論,因為用英文討論,不會產生中文中的歧義,看英文**

不會出現概念的誤解,中文微積分的一些概念在英文中是不存在的,會產生

誤會而難以準確理解國際微積分的真實含義。

2樓:幸運的

dz=fx(x,y)δx+fy(x,y)δy,dz是全微分,fx、fy是對x、y的偏導數。

如果函式z=f(x, y) 在(x, y)處的全增量

δz=f(x+δx,y+δy)-f(x,y)

可以表示為

δz=aδx+bδy+o(ρ),

其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即

dz=aδx +bδy

該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

在一元函式中,我們已經知道導數就是函式的變化率。對於二元函式我們同樣要研究它的「變化率」。然而,由於自變數多了一個,情況就要複雜的多。

在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。

在這裡我們只學習函式f(x,y)沿著平行於x軸和平行於y軸兩個特殊方位變動時,f(x,y)的變化率。

偏導數的運算元符號為:∂。

偏導數反映的是函式沿座標軸正方向的變化率。

表示固定面上一點的切線斜率。

偏導數f'x(x0,y0)表示固定面上一點對x軸的切線斜率;偏導數f'y(x0,y0)表示固定面上一點對y軸的切線斜率。

高階偏導數:如果二元函式z=f(x,y)的偏導數f'x(x,y)與f'y(x,y)仍然可導,那麼這兩個偏導函式的偏導數稱為z=f(x,y)的二階偏導數。

二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy.

注意:f"xy與f"yx的區別在於:前者是先對x求偏導,然後將所得的偏導函式再對y求偏導;後者是先對y求偏導再對x求偏導.

當f"xy與f"yx都連續時,求導的結果與先後次序無關。

3樓:向真丶

1.偏導數不存在

,全微分就不存在

2.全微分若存在,偏導數必須存在

3.有偏導數存在,全微分不一定存在

微分是函式改變數的線性主要部分,導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。

4樓:匿名使用者

偏導數存在是全微分的必要而非充分條件

怎麼理解二元函式全微分和2階混合偏導數的區別和聯絡?

5樓:匿名使用者

全微分就不是一個函式了

而是多元函式的全增量的線性主部

即dz=z'x dx+z'y dy

通常就用來求近似值等等

而概率密度則就是一個函式

這裡當然就用二階混合偏導數得到的

如何講清楚多元函式全微分與偏導數的關係?

6樓:幸運的

dz=fx(x,y)δ

x+fy(x,y)δy,dz是全微分,fx、fy是對x、y的偏導數。

如果函式z=f(x, y) 在(x, y)處的全增量

δz=f(x+δx,y+δy)-f(x,y)

可以表示為

δz=aδx+bδy+o(ρ),

其中a、b不依賴於δx, δy,僅與x,y有關,ρ趨近於0(ρ=√[(δx)2+(δy)2]),此時稱函式z=f(x, y)在點(x,y)處可微分,aδx+bδy稱為函式z=f(x, y)在點(x, y)處的全微分,記為dz即

dz=aδx +bδy

該表示式稱為函式z=f(x, y) 在(x, y)處(關於δx, δy)的全微分。

在數學中,一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

在一元函式中,我們已經知道導數就是函式的變化率。對於二元函式我們同樣要研究它的「變化率」。然而,由於自變數多了一個,情況就要複雜的多。

在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。

在這裡我們只學習函式f(x,y)沿著平行於x軸和平行於y軸兩個特殊方位變動時,f(x,y)的變化率。

偏導數的運算元符號為:∂。

偏導數反映的是函式沿座標軸正方向的變化率。

表示固定面上一點的切線斜率。

偏導數f'x(x0,y0)表示固定面上一點對x軸的切線斜率;偏導數f'y(x0,y0)表示固定面上一點對y軸的切線斜率。

高階偏導數:如果二元函式z=f(x,y)的偏導數f'x(x,y)與f'y(x,y)仍然可導,那麼這兩個偏導函式的偏導數稱為z=f(x,y)的二階偏導數。

二元函式的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy.

注意:f"xy與f"yx的區別在於:前者是先對x求偏導,然後將所得的偏導函式再對y求偏導;後者是先對y求偏導再對x求偏導.

當f"xy與f"yx都連續時,求導的結果與先後次序無關。

7樓:向真丶

1.偏導數不存在,全微分就不存在

2.全微分若存在,偏導數必須存在

3.有偏導數存在,全微分不一定存在

微分是函式改變數的線性主要部分,導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數。

8樓:pasirris白沙

1、偏導數,partial differentiation,一般是指沿著 x 方向、或 y 方向、

或 z 方向的導數;導數在美語中,喜歡用 derivative。

2、無論是沿著 x、y、z 哪個方向的導數,計算導數的方法,跟一元函式

求導數的方法,完全一樣;對 x 方向求導時,將 y、z 當成常數對待;

3、進一步推廣到任意方向,在任意方向上的導數,稱為方向導數,directional

differentiation,或 directional derivative;

4、方向導數的概念,其實也是偏導數的概念,但是寫成全導數的形式;

5、方向導數寫成全導數 total differentiation 的形式,原因是方向導數的

計算一般是由 x、y、z 三個方向的偏導數的分量 ***ponent 相加而成;

6、全導數,就是全微分,在英文中沒有絲毫區別,導數跟微分的區別是中國

微積分概念,不是國際通用微積分的概念;

7、全微分的意思是 : 函式的的無窮小增量 du,**於三個方向上的無窮小

相加而成,即 du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz。

歡迎追問,歡迎討論,中英文不限。

最好是用英文討論,因為用英文討論,不會產生中文中的歧義,看英文**

不會出現概念的誤解,中文微積分的一些概念在英文中是不存在的,會產生

誤會而難以準確理解國際微積分的真實含義。

關於多元函式的偏導數與全微分的題

9樓:匿名使用者

df/f=(n/t)dt,

積分得lnf=nlnt+lnc,

∴f=ct^n.

能補圖嗎?

10樓:星凌塵葬夢

f(x,y)中的x,y用tx,ty替換

偏導數與全導數的關係 以及 偏微分與全微分的關係

11樓:匿名使用者

1。偏導數

代數意義

偏導數是對一個變數求導,另一個變數當做數

對x求偏導的話y就看作一個數,描述的是x方向上的變化率

對y求偏導的話x就看作一個數,描述的是y方向上的變化率

幾何意義

對x求偏導是曲面z=f(x,y)在x方向上的切線

對y求偏導是曲面z=f(x,y)在x方向上的切線

這裡在補充點。就是因為偏導數只能描述x方向或y方向上的變化情況,但是我們要了解各個方向上的情況,所以後面有方向導數的概念。

2。微分

偏增量:x增加時f(x,y)增量或y增加時f(x,y)

偏微分:在detax趨進於0時偏增量的線性主要部分

detaz=fx(x,y)detax+o(detax)

右邊等式第一項就是線性主要部分,就叫做在(x,y)點對x的偏微分

這個等式也給出了求偏微分的方法,就是用求x的偏導數求偏微分

全增量:x,y都增加時f(x,y)的增量

全微分:根號(detax方+detay方)趨於0時,全增量的線性主要部分

同樣也有求全微分公式,也建立了全微分和偏導數的關係

dz=adx+bdy 其中a就是對x求偏導,b就是對y求偏導

希望樓主注意的是導數和微分是兩個概念,他們之間的關係就是上面所說的公式。概念上先有導數,再有微分,然後有了導數和微分的關係公式,公式同時也指明瞭求微分的方法。

3.全導數

全導數是在複合函式中的概念,和上面的概念不是一個系統,要分開。

u=a(t),v=b(t)

z=f[a(t),b(t)]

dz/dt 就是全導數,這是複合函式求導中的一種情況,只有這時才有全導數的概念。

dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt)

建議樓主在複合函式求導這裡好好看看書,這裡分為3種情況。1.中間變數一元就是上面的情況,才有全導數的概念。

2.中間變數有多元,只能求偏導 3.中間變兩有一元也有多元,還是求偏導。

對於你的題能求對x的偏導數,對y的偏導數,z的全微分,不能求全導數

如果z=f(x^2,2^x) 只有這種情況下dz/dx才是全導數!

請問和有什麼區別?儘量講清楚謝謝

就是個副詞,不是啥簡體形,也不是 形 副.1.如何地 怎樣地 2.為什麼 3.呀 唉呀 哎喲 表示驚歎 呀 4.相反 反倒 5.還不是這樣 做感嘆詞時表示強烈否定 對方的話 副詞.怎麼樣 怎麼 如何 為什麼 何故 唉呀唉呀主要有兩個意思。1 表示用什麼手段,方法 什麼 怎麼 博多 行 行 早 去博多...

賭神賭聖賭俠賭王有什麼區別?講清楚謝謝

賭神,賭聖,賭俠,賭王都是電影賭片裡的人物角色,區別是賭神是賭俠的師傅,賭俠是賭聖的師兄,自己的對手一般叫賭王。1 賭神 是一部由王晶執導,周潤發 劉德華等主演的一部劇情 喜劇電影。影片於1989年12月14日在中國香港上映。影片講述了賭神高進與 賭魔 陳金城之間龍爭虎鬥的故事。2 賭俠 是1990...

怎麼用左右把西門豹治鄴給講清楚,怎麼用30字左右把西門豹治鄴給講清楚?

兩千多年前,西門豹管理鄴 今河南安陽市北,河北臨漳縣西 那個地方時,通過調查,瞭解到那裡的官紳和巫婆勾結在一起危害百姓,便設計破除迷信,並大力興修水利,使鄴地重又繁榮起來。這是一篇歷史散文,寫西門豹治鄴的兩大實績 革除 為河伯娶婦 的陋習,鑿渠引水灌溉農田。革除陋習是全文的重點,興建水利是輔助性的筆...