為什麼風力發電機有葉片組成,而不是或兩個

2021-03-06 02:34:37 字數 5494 閱讀 6456

1樓:匿名使用者

凡屬軸流風扇的葉片數目往往是奇數設計。 這是由於若採用偶數片形狀對稱的扇葉,不易調整平衡。還很容易使系統發生共振,倘葉片材質又無法抵抗振動產生的疲勞,將會使葉片或心軸發生斷裂。

因此設計多為軸心不對稱的奇數片扇葉設計。對於軸心不對稱的奇數片扇葉,這一原則普遍應用於大型風機以及包括部分***螺旋槳在內的各種扇葉設計中。

包括家庭使用的電風扇都是3個葉片的,葉片形狀是鳥翼型(設計術語),這樣的葉片流量大,噪聲低,符合流體力學原理。所以絕大多數風扇都是三片葉的。

三片葉有較好的動平衡,不易產生振盪,減少軸承的磨損。降低維修成本。

2樓:物語

葉片材料相同的情況下,要達到相同的發電量,葉片數越多葉片長度就必須做的越長,而葉片長度越長越容易折斷,而兩個葉片會造成空間的浪費,不能充分利用風力。

3樓:匿名使用者

風力機有三個葉片的,也有兩個葉片的,也有一個葉片的;

相對而言兩個葉片的發電量更高一點;

最主要的是以塔架軸為中心的質量矩是平衡的,而兩葉片只有在葉片處於水平狀態下才是平衡的的。

4樓:驃騎小悍馬

a 葉片2個或者1個其實都可以,只是出於視覺習慣,3個葉片看起來更和諧

風力發電機為什麼是三個葉片

5樓:du知道君

當然,也有兩個也片的。但是,在現在大容量的機組中,一般都是採用三槳葉的,這樣可以更有效的利用風能。

為什麼有的風力發電機葉片在轉動,有的不轉動?

6樓:匿名使用者

因為葉片的角度改變了,正常是45度左右。不想轉的時候就變成90度。你可以仔細觀察

7樓:膠南一男

如果啟動力矩一樣,那麼就是兩個地方的風速情況不一樣。

如果是風速一樣,那麼就是兩個鳳塔的啟動力矩不一樣。

如果是兩個鳳塔功率一樣,風速一樣,那就是質量不合格,做成的啟動力矩不一樣了

8樓:匿名使用者

有可能是一下兩種原因:

1. 不轉的是有工作人員在檢修,臨時人為將風機停轉,待檢修好了後再恢復到自動運轉。

2. 風速相同地點,如果是不同公司的風機,那麼對於正常氣動的風速的要求是不同的,有的公司的風機正常工作的風速範圍比如4----27米/秒,有的公司的風機可能就會是6-----23米/秒,所以當風速在4---5米/秒或24米/秒以上時,有的就自動停止了,這是機組本身的一個保護程式。

希望回答對您有幫助。

9樓:逸凡風電

可能是功率不一樣,啟動風速不一樣吧

10樓:匿名使用者

兩種情況,1 各個風力機遇到的風速 風向不同;

2 理論上,同一型號的風力機效能應該是完全一樣的,但是由於製造以及產品質量的問題,使得各個風力機的效能並不完全一致,因此即使遇到相同的風況(樓上說的啟動風速),也不能同時啟動。

為什麼風力發電機的風葉很小?

11樓:毛毛絲絲毛毛斯

因為風機葉片的外形是經過細緻的設計以便實現付出最小的成本獲得最大的輸出效率。

設計方案主要由氣動需求決定,但經濟決定需要設計建造成本合理的葉片外形。而且,葉片的厚度從葉尖向根部逐漸增大,因為根部要承擔最大的載荷。

主要結構考量因素有:

1、長度:

葉片的長度影響了掃風面積,也就決定了捕風能力。根據betz法則實際上最多只能有一半的風能被風機捕獲。

2、氣動部分:

在葉片的橫截面上可以清楚地看到葉片的氣動外形,正是這種獨特的設計產生了推力促使風機轉動。

3、俯視翼形:

葉片的形狀從葉根到葉尖逐漸變窄,以保證整個掃風區域保持恆定的減速率。確保氣流不會過慢通過葉片而產生擾流,同時通過速度也不會過快而造成能量浪費。

4、剖面厚度:

從尖部到根部葉片厚度逐漸增大以承擔更大的載荷和彎矩。如果載荷不是很重要的話,一般情況下厚度長的比值在10-15%。靠近葉片根部的平坦部分有助於提高捕風效率。

5、葉片扭轉設計:

因為葉片的轉速隨著長度的增加而增大,迎風角度是隨著葉片延展連續變化的。因此為了保持葉片迎風區域具有較佳的攻角,葉片需要被設計成扭轉形式。

6、葉片數量和轉速:

通常情況下風機葉片的轉速大約是風速的7到10倍,目前的設計葉片最多為3個。轉速越高,葉片數量越多也就意味著葉片尺寸要做的更窄,更薄,從而很難保證葉片具有足夠的強度。而在轉速過快的時候葉片的捕風效率也有所降低,更易受到環境侵蝕和飛鳥撞擊的傷害。

12樓:匿名使用者

風力發電機較小的葉片外形是經過細緻的設計以便實現付出最小的成本獲得較大的輸出效率。設計方案主要由氣動需求決定,但實現經濟性就決定設計建造成本合理的葉片外形。而且,葉片的厚度從葉尖向根部逐漸增大,因為根部要承擔較大的載荷。

主要結構考量因素有:

1、長度:

葉片的長度影響了掃風面積,也就決定了捕風能力。根據betz法則實際上最多只能有一半的風能被風機捕獲。

2、氣動部分:

在葉片的橫截面上可以清楚地看到葉片的氣動外形,正是這種獨特的設計產生了推力促使風機轉動。

3、俯視翼形:

葉片的形狀從葉根到葉尖逐漸變窄,以保證整個掃風區域保持恆定的減速率。確保氣流不會過慢通過葉片而產生擾流,同時通過速度也不會過快而造成能量浪費。

4、剖面厚度:

從尖部到根部葉片厚度逐漸增大以承擔更大的載荷和彎矩。如果載荷不是很重要的話,一般情況下厚度長的比值在10-15%。靠近葉片根部的平坦部分有助於提高捕風效率。

5、葉片扭轉設計:

因為葉片的轉速隨著長度的增加而增大,迎風角度是隨著葉片延展連續變化的。因此為了保持葉片迎風區域具有較佳的攻角,葉片需要被設計成扭轉形式。

6、葉片數量和轉速:

通常情況下風機葉片的轉速大約是風速的7到10倍,目前的設計葉片最多為3個。轉速越高,葉片數量越多也就意味著葉片尺寸要做的更窄,更薄,從而很難保證葉片具有足夠的強度。而在轉速過快的時候葉片的捕風效率也有所降低,噪音增大,更易受到環境侵蝕和飛鳥撞擊的傷害。

13樓:我想你的

風力發電機葉片比例必須較小,這是因為:風機葉片的外形是經過細緻的設計以便實現付出最小的成本獲得最大的輸出效率。

設計方案主要由氣動需求決定,但經濟決定需要設計建造成本合理的葉片外形。而且,葉片的厚度從葉尖向根部逐漸增大,因為根部要承擔最大的載荷。

主要結構考量因素有:

1、長度

葉片的長度影響了掃風面積,也就決定了捕風能力。根據 betz 法則實際上最多只能有一半的風能被風機捕獲。

2、氣動部分

在葉片的橫截面上可以清楚地看到葉片的氣動外形, 正是這種獨特的設計產生了推力促使風機轉動。

3、俯檢視翼形

葉片的形狀從葉根到葉尖逐漸變窄,以保證整個掃風區域保持恆定的減速率。確 保氣流不會過慢通過葉片而產生擾流,同時通過速度也不會過快而造成能量浪費。

4、剖面厚度

從尖部到根部葉片厚度逐漸增大以承擔更大的載荷和彎矩。 如果載荷不是很重要 的話,一般情況下厚度和絃長的比值在 10-15%。靠近葉片根部的平坦部分有助 於提高捕風效率。

5、葉片扭轉設計

因為葉片的轉速隨著長度的增加而增大,迎風角度是隨著葉片延展連續變化的。 因此為了保持葉片迎風區域具有最佳的攻角,葉片需要被設計成扭轉形式。

6、葉片數量和轉速

通常情況下風機葉片的轉速大約是風速的 7 到 10 倍,目前的設計葉片最多為 3 個。轉速越高,葉片數量越多也就意味著葉片尺寸要做的更窄,更薄,從而很難 保證葉片具有足夠的強度。而在轉速過快的時候葉片的捕風效率也有所降低,噪音增大,更易受到環境侵蝕和飛鳥撞擊的傷害。

擴充套件資料

葉片是風力發電機中最基礎和最關鍵的部件,其良好的設計,可靠的質量和優越的效能是保證機組正常穩定執行的決定因素。惡劣的環境和長期不停地運轉,對葉片的要求有:

1、密度輕且具有最佳的疲勞強度和力學效能,能經受暴風等極端惡劣條件和隨機負載的考驗;

3、葉片的材料必須保證表面光滑以減小風阻,粗糙的表面亦會被風「撕裂」;

4、不得產生強烈的電磁波干擾和光反射;

5、不允許產生過大噪聲;

6、耐腐蝕、紫外線照射和雷擊效能好;

7、成本較低,維護費用最低。

14樓:匿名使用者

其實風力發電機的風葉已經很大了,風葉有十多米長,只是由於基座太大太高,顯得葉片較小。對於基座來說,葉片比例必須較小,這是因為:

1、葉片必須滿足:密度輕且具有最佳的疲勞強度和力學效能,能經受暴風等極端惡劣條件和隨機負載的考驗。太大了負載太大,基座會難以承受;

3、葉片的材料必須保證表面光滑以減小風阻,粗糙的表面亦會被風「撕裂」;

4、不會產生過大噪聲;

5、成本較低,維護費用低。

擴充套件資料

風力發電機結構:

1、機艙:機艙包容著風力發電機的關鍵裝置,包括齒輪箱、發電機。維護人員可以通過風力發電機塔進入機艙。機艙左端是風力發電機轉子,即轉子葉片及軸。

2、轉子葉片:捉獲風,並將風力傳送到轉子軸心。現代600千瓦風力發電機上,每個轉子葉片的測量長度大約為20米,而且被設計得很象飛機的機翼。

3、軸心:轉子軸心附著在風力發電機的低速軸上。

4、低速軸:風力發電機的低速軸將轉子軸心與齒輪箱連線在一起。在現代600千瓦風力發電機上,轉子轉速相當慢,大約為19至30轉每分鐘。

軸中有用於液壓系統的導管,來激發空氣動力閘的執行。

15樓:小白r撓小雞雞

需要綜合考慮,親

風機葉片的外形是經過細緻的設計以便實現付出最小的成本獲得最大的輸出效率。設計方案主要由氣動需求決定,但經濟決定需要設計建造成本合理的葉片外形。而且,葉片的厚度從葉尖向根部逐漸增大,因為根部要承擔最大的載荷。

主要結構考量因素有:

1 長度

葉片的長度影響了掃風面積,也就決定了捕風能力。根據 betz 法則實際上最多 只能有一半的風能被風機捕獲。

2 氣動部分

在葉片的橫截面上可以清楚地看到葉片的氣動外形, 正是這種獨特的設計產生了 推力促使風機轉動。

3 俯檢視翼形

葉片的形狀從葉根到葉尖逐漸變窄,以保證整個掃風區域保持恆定的減速率。確 保氣流不會過慢通過葉片而產生擾流,同時通過速度也不會過快而造成能量浪

費。4 剖面厚度

從尖部到根部葉片厚度逐漸增大以承擔更大的載荷和彎矩。 如果載荷不是很重要 的話,一般情況下厚度和絃長的比值在 10-15%。靠近葉片根部的平坦部分有助 於提高捕風效率。

5 葉片扭轉設計

因為葉片的轉速隨著長度的增加而增大,迎風角度是隨著葉片延展連續變化的。 因此為了保持葉片迎風區域具有最佳的攻角,葉片需要被設計成扭轉形式。

6 葉片數量和轉速

通常情況下風機葉片的轉速大約是風速的 7 到 10 倍,目前的設計葉片最多為 3 個。轉速越高,葉片數量越多也就意味著葉片尺寸要做的更窄,更薄,從而很難 保證葉片具有足夠的強度。而在轉速過快的時候葉片的捕風效率也有所降低,噪音增大,更易受到環境侵蝕和飛鳥撞擊的傷害。

風力發電機葉片為啥設計的寬點風力發電機的葉片為什麼設計的那麼窄大一些不好麼

葉片寬度 葉片數與轉速成反比 不可否認,寬葉片與窄葉片相比,寬葉片在旋轉過程當中產生的阻力較大,但是,同時寬葉片迎風面受風壓力也比窄葉片大。風輪之所以轉動是因為葉片所受風的正壓力大於風輪旋轉過程中葉片所受阻力,而壓力和阻力均遵循物理學壓力等於壓強乘以受壓面積,即f p s f,葉片所受壓力 p,葉片...

為什麼風力發電機的葉片那麼窄為什麼風力發電機的風葉很小?

安全的考慮,因為目前所利用的風能至少在高度10米以上的空中,最高的甚至1 2百米高,這樣會導致支撐杆的根部受力非常大 槓桿的作用。另外每個地方的風力都不是保持不變的,最小時可能是1 2級,但是最大時能達到7 8級,甚至更高。這樣需要多麼堅固的支撐杆才能保持住上面的迎風面呢?這需要經過計算後才能得出結...

為什麼風力發電機的風葉很小為什麼風能發電機的風葉很小?

因為風機葉片的外形是經過細緻的設計以便實現付出最小的成本獲得最大的輸出效率。設計方案主要由氣動需求決定,但經濟決定需要設計建造成本合理的葉片外形。而且,葉片的厚度從葉尖向根部逐漸增大,因為根部要承擔最大的載荷。主要結構考量因素有 1 長度 葉片的長度影響了掃風面積,也就決定了捕風能力。根據betz法...