請問一下在數學中R 和R 分別代表什麼意思?(是在高一數學資

2021-03-23 11:17:07 字數 4903 閱讀 1228

1樓:匿名使用者

一般來說r+表示正實數,r-表示負實數,且二者不包括0在內

但是會有一些書上把0包含在其中,這要看人家是怎麼定義的

一般在正規的書的最前面或者扉頁上會有符號定義,或者在書中第一次使用時會給出定義。你可以稍微找一下

2樓:匿名使用者

r- 負實數

r+ 正實數

是啊,0不在內,

3樓:匿名使用者

r- 負實數 r+ 正實數

r在數學是什麼意思

4樓:柚

實數集,real number

(一)數學名詞。有理數和無理數的總稱。

(二)確實的數字。【例】公司到底還有多少錢?請你告訴我實數!

[編輯本段]數學術語

[編輯本段]1、基本概念

實數包括有理數和無理數。其中無理數就是無限不迴圈小數,有理數就包括整數和分數。

數學上,實數直觀地定義為和數軸上的點一一對應的數。本來實數僅稱作數,後來引入了虛數概念,原本的數稱作「實數」——意義是「實在的數」。

實數可以分為有理數和無理數兩類,或代數數和超越數兩類,或正數,負數和零三類。實數集合通常用字母 r 或 r^n 表示。而 r^n 表示 n 維實數空間。

實數是不可數的。實數是實分析的核心研究物件。

實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是迴圈的,也可以是非迴圈的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n 為正整數)。

在計算機領域,由於計算機只能儲存有限的小數位數,實數經常用浮點數來表示。

①相反數(只有符號不同的兩個數,我們就說其中一個是另一個的相反數) 實數a的相反數是-a

②絕對值(在數軸上一個數所對應的點與原點0的距離) 實數a的絕對值是:

|a|= ①a為正數時,|a|=a

②a為0時, |a|=0

③a為負數時,|a|=-a

③倒數 (兩個實數的乘積是1,則這兩個數互為倒數) 實數a的倒數是:1/a (a≠0)

[編輯本段]2、歷史**

埃及人早在大約公元前2023年就開始運用分數了。在公元前500年左右,以畢達哥拉斯為首的希臘數學家們意識到了無理數存在的必要性。印度人於公元600年左右發明了負數,據說中國也曾發明負數,但稍晚於印度。

直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。直到2023年,德國數學家康托爾第一次提出了實數的嚴格定義。

[編輯本段]3、相關定義

從有理數構造實數

實數可以用通過收斂於一個唯一實數的十進位制或二進位制如 所定義的序列的方式而構造為有理數的補全。實數可以不同方式從有理數構造出來。這裡給出其中一種,其他方法請詳見實數的構造。

公理的方法

設 r 是所有實數的集合,則:

集合 r 是一個域: 可以作加、減、乘、除運算,且有如交換律,結合律等常見性質。

域 r 是個有序域,即存在全序關係 ≥ ,對所有實數 x, y 和 z:

若 x ≥ y 則 x + z ≥ y + z;

若 x ≥ 0 且 y ≥ 0 則 xy ≥ 0。

集合 r 滿足戴德金完備性,即任意 r 的非空子集 s (s∈r,s≠φ),若 s 在 r 內有上界,那麼 s 在 r 內有上確界。

最後一條是區分實數和有理數的關鍵。例如所有平方小於 2 的有理數的集合存在有理數上界,如 1.5;但是不存在有理數上確界(因為 √2 不是有理數)。

實數通過上述性質唯一確定。更準確的說,給定任意兩個戴德金完備的有序域 r1 和 r2,存在從 r1 到 r2 的唯一的域同構,即代數學上兩者可看作是相同的。

[編輯本段]4、相關性質

基本運算

實數可實現的基本運算有加、減、乘、除、平方等,對非負數還可以進行開方運算。實數加、減、乘、除(除數不為零)、平方後結果還是實數。任何實數都可以開奇次方,結果仍是實數,只有非負實數,才能開偶次方其結果還是實數。

完備性作為度量空間或一致空間,實數集合是個完備空間,它有以下性質:

所有實數的柯西序列都有一個實數極限。

有理數集合就不是完備空間。例如,(1, 1.4, 1.

41, 1.414, 1.4142, 1.

41421, ...) 是有理數的柯西序列,但沒有有理數極限。實際上,它有個實數極限 √2。

實數是有理數的完備化——這亦是構造實數集合的一種方法。

極限的存在是微積分的基礎。實數的完備性等價於歐幾里德幾何的直線沒有「空隙」。

「完備的有序域」

實數集合通常被描述為「完備的有序域」,這可以幾種解釋。

首先,有序域可以是完備格。然而,很容易發現沒有有序域會是完備格。這是由於有序域沒有最大元素(對任意元素 z,z + 1 將更大)。所以,這裡的「完備」不是完備格的意思。

另外,有序域滿足戴德金完備性,這在上述公理中已經定義。上述的唯一性也說明了這裡的「完備」是指戴德金完備性的意思。這個完備性的意思非常接近採用戴德金分割來構造實數的方法,即從(有理數)有序域出發,通過標準的方法建立戴德金完備性。

這兩個完備性的概念都忽略了域的結構。然而,有序群(域是種特殊的群)可以定義一致空間,而一致空間又有完備空間的概念。上述完備性中所述的只是一個特例。

(這裡採用一致空間中的完備性概念,而不是相關的人們熟知的度量空間的完備性,這是由於度量空間的定義依賴於實數的性質。)當然,r 並不是唯一的一致完備的有序域,但它是唯一的一致完備的阿基米德域。實際上,「完備的阿基米德域」比「完備的有序域」更常見。

可以證明,任意一致完備的阿基米德域必然是戴德金完備的(當然反之亦然)。這個完備性的意思非常接近採用柯西序列來構造實數的方法,即從(有理數)阿基米德域出發,通過標準的方法建立一致完備性。

「完備的阿基米德域」最早是由希爾伯特提出來的,他還想表達一些不同於上述的意思。他認為,實數構成了最大的阿基米德域,即所有其他的阿基米德域都是 r 的子域。這樣 r 是「完備的」是指,在其中加入任何元素都將使它不再是阿基米德域。

這個完備性的意思非常接近用超實數來構造實數的方法,即從某個包含所有(超實數)有序域的純類出發,從其子域中找出最大的阿基米德域。

高階性質

實數集是不可數的,也就是說,實數的個數嚴格多於自然數的個數(儘管兩者都是無窮大)。這一點,可以通過康托爾對角線方法證明。實際上,實數集的勢為 2ω(請參見連續統的勢),即自然數集的冪集的勢。

由於實數集中只有可數集個數的元素可能是代數數,絕大多數實數是超越數。實數集的子集中,不存在其勢嚴格大於自然數集的勢且嚴格小於實數集的勢的集合,這就是連續統假設。該假設不能被證明是否正確,這是因為它和集合論的公理不相關。

所有非負實數的平方根屬於 r,但這對負數不成立。這表明 r 上的序是由其代數結構確定的。而且,所有奇數次多項式至少有一個根屬於 r。

這兩個性質使 r成為實封閉域的最主要的例項。證明這一點就是對代數基本定理的證明的前半部分。

實數集擁有一個規範的測度,即勒貝格測度。

實數集的上確界公理用到了實數集的子集,這是一種二階邏輯的陳述。不可能只採用一階邏輯來刻畫實數集:1.

löwenheim-skolem定理說明,存在一個實數集的可數稠密子集,它在一階邏輯中正好滿足和實數集自身完全相同的命題;2. 超實數的集合遠遠大於 r,但也同樣滿足和 r 一樣的一階邏輯命題。滿足和 r 一樣的一階邏輯命題的有序域稱為 r 的非標準模型。

這就是非標準分析的研究內容,在非標準模型中證明一階邏輯命題(可能比在 r 中證明要簡單一些),從而確定這些命題在 r 中也成立。

拓撲性質

實數集構成一個度量空間:x 和 y 間的距離定為絕對值 |x - y|。作為一個全序集,它也具有序拓撲。

這裡,從度量和序關係得到的拓撲相同。實數集又是 1 維的可縮空間(所以也是連通空間)、區域性緊緻空間、可分空間、貝利空間。但實數集不是緊緻空間。

這些可以通過特定的性質來確定,例如,無限連續可分的序拓撲必須和實數集同胚。以下是實數的拓撲性質總覽:

令 a 為一實數。a 的鄰域是實數集中一個包括一段含有 a 的線段的子集。

r 是可分空間。

q 在 r 中處處稠密。

r的開集是開區間的聯集。

r的緊子集是有界閉集。特別是:所有含端點的有限線段都是緊子集。

每個r中的有界序列都有收斂子序列。

r是連通且單連通的。

r中的連通子集是線段、射線與r本身。由此性質可迅速匯出中間值定理。

[編輯本段]5、擴充套件與一般化

實數集可以在幾種不同的方面進行擴充套件和一般化:

最自然的擴充套件可能就是複數了。複數集包含了所有多項式的根。但是,複數集不是一個有序域。

實數集擴充套件的有序域是超實數的集合,包含無窮小和無窮大。它不是一個阿基米德域。

有時候,形式元素 +∞ 和 -∞ 加入實數集,構成擴充套件的實數軸。它是一個緊緻空間,而不是一個域,但它保留了許多實數的性質。

希爾伯特空間的自伴隨運算元在許多方面一般化實數集:它們可以是有序的(儘管不一定全序)、完備的;它們所有的特徵值都是實數;它們構成一個實結合代數。

高一數學問題

5樓:匿名使用者

含引數的曲線方程中,觀察定點的方法是:

將含有引數的式子全部整到一起,然後將引數提出,係數為0且常數為0列得一個方程組,解得x,y即為定點座標

本題首先求出圓方程

常規方法是,圓心c是ab中點,半徑是ab的一半,得圓標準方程,化為一般方程

有一種較簡單的方法

設p(x,y)是圓c上任意一點

則向量ap=(x,y-1) 向量bp=(x-4,y-a)由ap垂直於bp知,它們的數量積為0

即x(x-4)+(y-1)(y-a)=0

x²-4x+y²-y-ay+a=0

(x²-4x+y²-y)+a(1-y)=0令x²-4x+y²-y=0且1-y=0

得x=0,y=1或x=4,y=1

所以圓過定點(0,1)和(4,1)

其中(0,1)就是a點

(4,1)是除a外的另一定點

看到你回答管螺紋很專業,像請問一下R1 4管螺紋是內螺紋還是外螺紋,還是都有。Rc

螺紋特徵代號 字母rc表示圓錐內螺紋 字母rp表示圓柱內螺紋 字母r表示圓錐外螺紋。螺紋 在圓柱或圓錐母體表面上製出的螺旋線形的 具有特定截面的連續凸起部分。螺紋按其母體形狀分為圓柱螺紋和圓錐螺紋 按其在母體所處位置分為外螺紋 內螺紋,按其截面形狀 牙型 分為三角形螺紋 矩形螺紋 梯形螺紋 鋸齒形螺...

幫忙解釋一下圖電路中R2的作用啊

這個電路來原先是l和r先串聯,再跟源r2並聯bai,電流表測的是r2的電du流,電壓表測的是zhil的電壓,而當發生故障 dao後,電流表讀數變大,那r2兩端的電壓就變大了,不就是路端電壓增大了,而外電路和電源內阻是串聯在電路中的,r兩端的電壓減小,那整個電路的電流不就減小,那外電路的總電阻就增大了...

請問一下各位大俠們 鋒行K3R1這臺電腦效能怎麼樣?像穿越 地下城以及3D遊戲都可以玩嗎?顯示卡是交火的

效能來說足夠了,這款電腦的交火就是用cpu內建的顯示卡和主機板上的獨立顯示卡聯合起來去處理資料,比單一的同型號獨立顯示卡或者整合顯示卡效能要強一些,不貴。玩什麼 玩dnf 和lol 還可以 如果cf的話 你就要設定sj了 要不然 進遊戲 會被卡死 是有可能 被卡死 玩遊戲,組裝才是王道!效能一般吧,...