直線的方程點斜式 兩點式 斜截式 截距式適用的條件是什麼

2021-08-10 23:16:54 字數 5084 閱讀 2617

1樓:匿名使用者

已知未知直線的斜率並過一已知點,求未知直線時,設直線為點斜式方程;

已知未知直線過兩已知點,求未知直線時,用兩點式方程;

已知直線的斜率和在y軸上的截距,求未知直線時,用斜截式方程,(可用點斜式方程代替);

已知直線在座標軸的兩個截距,求未知直線時,用截距式方程,(可用兩點式方程代替);

2樓:新手報到

已知直線斜率存在且為k,經過點(a,b) 用點斜式 y=k(x-a)+b

已知直線經過兩點(x1,y1),(x2,y2) x1≠x2 用兩點式 (y-y1)/(x-x1)=(y1-y2)/(x1-x2) 或(y-y2)/(x-x2)=(y1-y2)/(x1-x2)

已知直線斜率存在且為k,y軸截距為b 用斜截式 y=kx+b已知直線在x,y軸截距分別為a,b a,b 都不為0 用截距式 x/a+y/b=1

3樓:遇x知

斜截式要求斜率存在

截距式要求截距不為0

點斜式要求斜率存在

兩點式不常用,不太清楚

點斜式、斜截式、兩點成、截距式的形式和適用條件

4樓:匿名使用者

1、斜截式:知道du斜率

zhik和縱截距b,直線方程為daoy=kx+b2、截距專式:知道橫截距a,縱截距b,則直線方程為x/a+y/b=13、點屬斜式:知道點(x1,y1),斜率k,則直線方程為y=y1+k(x-x1)

4、兩點式:知道兩點(x1,y1),(x2,y2),則直線方程:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)

很高興為您解答有用請採納

直線的點斜式、截距式、斜截式、一般式方程公式分別是啥

5樓:喵喵喵

1、點斜式

幾何條件是過點(x0,y0),斜率為k ;方程為y-y0=k(x-x0) ;侷限性是不含垂直於x軸的直線。

2、斜截式

幾何條件是斜率為k,縱截距為b ;方程為y=kx+b;侷限性是不含垂直於x軸的直線。

3、兩點式

幾何條件是過兩點(x1,y1),(x2,y2),(x1≠x2,y1≠y2);方程為(y-y1)/(y2-y1)=(x-x1)(x2-x1);侷限性是不包括垂直於座標軸的直線。

4、截距式

幾何條件是在x軸、y軸上的截距分別為a,b(a,b≠0);方程為x/a+y/b =1 不包括垂直於座標軸和過原點的直線。

5、一般式

方程為ax+by+c=0(a,b不全為0) 。

擴充套件資料

由直線的斜率範圍來確定傾斜角的範圍:

(1)若直線的斜率範圍是(k1,k2)(k1k2>0),且k1=tanα1,k2=tanα2時,則傾斜角的取值範圍是(α1,α2);

(2)若直線的斜率範圍是(k1,k2)(k1<0,k2>0),且k1=tanα1,k2=tanα2時,則傾斜角的取值範圍是(0,α2)∪(α1,π);

(3)若直線的斜率範圍是(-∞,k1)∪(k2,+∞)且k1=tanα1<0,k2=tanα2>0,則傾斜角的取值範圍是(α2,α1);

(4)若直線的斜率範圍是(-∞,k)(k>0),且k=tanα時,則傾斜角的取值範圍是(0,α)∪(\frac,π)。

6樓:大頭聰

一般式為ax+by+c=0,它的優點就是它可以表示平面上的任意一條直線,僅此而已.

其它式都有特例直線不能表示.比如:

斜截式y=kx+b,就不能表示垂直x軸的直線x=a.

點斜式y-y0=k(x-x0),也不能表示垂直x軸的直線x=a截距式x/a+y/b=1不能表示截距為0時的直線,比如正比例直線.

7樓:匿名使用者

1:一般式:ax+by+c=0(a、b不同時為0)【適用於所有直線】a1/a2=b1/b2≠c1/c2←→兩直線平行a1/a2=b1/b2=c1/c2←→兩直線重合橫截距a=-c/a

縱截距b=-c/b

2:點斜式:y-y0=k(x-x0) 【適用於不垂直於x軸的直線】表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1【適用於不過原點或不垂直於x軸、y軸的直線】

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線4:斜截式:y=kx+b【適用於不垂直於x軸的直線】表示斜率為k且y軸截距為b的直線

5:兩點式:【適用於不垂直於x軸、y軸的直線】表示過(x1,y1)和(x2,y2)的直線兩點式(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)

斜截式兩點式截距式點斜式的適用範圍分別是?

8樓:匿名使用者

1、斜截式

:知道復斜率k和縱截

制距b,直線方程為y=kx+b

2、截距式:bai知道橫截距a,縱du截距b,則直線方程zhi為x/a+y/b=1

3、點斜式:知道點(x1,y1),斜率daok,則直線方程為y=y1+k(x-x1)

4、兩點式:知道兩點(x1,y1),(x2,y2),則直線方程:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)

點斜式,斜截式,截距式,兩點式,一般式,引數式方程的區別與侷限性

9樓:牟金生墨溪

1:一般式:ax+by+c=0(a、b不同時為0)【適用於所有直線】a1/a2=b1/b2≠c1/c2←→兩直線平行a1/a2=b1/b2=c1/c2←→兩直線重合橫截距a=-c/a

縱截距b=-c/b

2:點斜式:y-y0=k(x-x0)

【適用於不垂直於x軸的直線】

表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1【適用於不過原點或不垂直於x軸、y軸的直線】

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線4:斜截式:y=kx+b【適用於不垂直於x軸的直線】表示斜率為k且y軸截距為b的直線

5:兩點式:【適用於不垂直於x軸、y軸的直線】表示過(x1,y1)和(x2,y2)的直線兩點式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

10樓:匿名使用者

好的lz

點斜式方程y-y1=k(x-x1),必須滿足斜率存在,斜率不存在時這個方程無法列出

斜截式方程y=kx+b,同樣必須滿足斜率存在,斜率不存在時需要另外討論

截距式方程x/a + y/b =1,這個方程除開必須保證斜率存在,還必須保證斜率k≠0,a≠0,b≠0

兩點式方程(y-y1)/(y1-y2)=(x-x1)/(x1-x2),這個方程同樣需斜率存在且不為0

一般式 ax+by+c=0 這個方程可以適用任何直線,沒有限制,但是解題如果撞上用一般式來求直線的情形,100%是代入求解二元一次方程組,計算量最大

直線的引數方程式

x=x1+t

y=y1+kt

t是直線上一點p,與(x1,y1)形成有向線段的數量

一般也可以做

x=x1+at

y=y1+bt (k=b/a)

顯然,限制條件也是k必須存在

點斜式,斜截式,兩點式,截距式,一般式,這五個公式是用來求什麼的? 20

11樓:郭敦顒

郭敦顒回答:

是表達直線方程的。

直線的點斜式方程:y-y1=k(x-x1),k——斜率,直線l過點p(x1,y1);

直線的斜截式方程:y=kx+b,k——斜率,直線l在y軸上的截距;

直線的兩點式方程:(y-y1)/(x-x1)=(y1-y2)/(x1-x2),直線l過兩點p1(x1,y1)和p2(x2,y2);

直線的截距式方程:x/a=y/b=1,直線l過點a(a,0)和b(0,b),a,b≠0;

直線的一般式方程:ax+by+c=0,a或b可為0,但不可同時為0。

各直線方程可相互轉化,又多轉化為直線的斜截式方程y=kx+b。

直線的斜截式方程y=kx+b,又表達為關於y與x的函式式,稱為直線函式。

12樓:匿名使用者

你仔細看一下它的命名其實就是它的兩已知條件.求出直線方程.比如點斜式,就是已知一個點的座標和斜率,則用點斜式求出直線方程,後面幾種都是相類同的.仔細想想就明白了.

直線的點斜式、截距式、斜截式、一般式方程公式分別是什麼?

13樓:小小芝麻大大夢

1:一般式:ax+by+c=0(a、b不同時為0)【適用於所有直線】

a1/a2=b1/b2≠c1/c2←→兩直線平行

a1/a2=b1/b2=c1/c2←→兩直線重合

2:點斜式:y-y0=k(x-x0) 【適用於不垂直於x軸的直線】

表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1【適用於不過原點或不垂直於x軸、y軸的直線】

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

4:斜截式:y=kx+b【適用於不垂直於x軸的直線】

表示斜率為k且y軸截距為b的直線

5:兩點式:【適用於不垂直於x軸、y軸的直線】

表示過(x1,y1)和(x2,y2)的直線

兩點式(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)

擴充套件資料

一次函式的函式性質

1、y的變化值與對應的x的變化值成正比例,比值為k。

即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。

2、當x=0時,b為函式在y軸上的交點,座標為(0,b)。

當y=0時,該函式圖象在x軸上的交點座標為(-b/k,0)。

3、k為一次函式y=kx+b的斜率,k=tanθ(角θ為一次函式圖象與x軸正方向夾角,θ≠90°)。

4、當b=0時(即y=kx),一次函式圖象變為正比例函式,正比例函式是特殊的一次函式。

5、函式圖象性質:當k相同,且b不相等,影象平行;

當k不同,且b相等,圖象相交於y軸;

當k互為負倒數時,兩直線垂直。

6、平移時:上加下減在末尾,左加右減在中間。

直線的兩點式,點斜式,截距式,斜截式,一般式方程的區別

斜截式 已知直線bai在x軸,y軸上du的截距分別為a,b且zhia.b不相等。點斜dao式 過點 x1,y1 且直版線的斜率為k.範圍 直權線不垂直x軸。兩點式 已知直線過 x1,y1,x2,y2 兩點且x1不等於x2,y1兩點式不等於y2.範圍 不垂直x,y軸。截距式 已知直線在x軸y軸的截距分...

兩點間直線的方程公式是什麼,兩點間的直線方程怎麼求

點斜式 已知直線l的斜率是k,並且經過點p1 x1,y1 直線方程是y y1 k x x1 但要注意兩個特例 1.當直線的斜率為0 時直線的方程是y y1。2.當直線的斜率為90 時,直線的斜率不存在,直線方程是x x1.兩點式 已知直線l上的兩點p1 x1,y1 p2 x2,y2 x1 x2 直線...

直線引數方程中直線兩點的距離什麼時候用

最佳推薦答案 這個題目可以用點到直線的距離公式來算。已知直線 內方程和圓心,很容易能求 容出圓心到直線的距離d。這個距離如果大於半徑r,就沒有交點了,沒有弦了。如果這個距離d與半徑相等,就有一個交點。弦長是0.如果這個距離d比半徑r小,就有兩個交點。弦長的一半是 以半徑為斜邊,以圓心到直線距離d為直...