積分與微分的區別是什麼,微分與積分是什麼,有區別麼

2021-08-17 19:13:03 字數 5644 閱讀 3414

1樓:

積分一般分為不定積分、定積分和微積分三種

1.0不定積分

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分。

記作∫f(x)dx。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分。

由定義可知:

求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c,就得到函式f(x)的不定積分。

也可以表述成,積分是微分的逆運算,即知道了導函式,求原函式.

2.0定積分

眾所周知,微積分的兩大部分是微分與積分。微分實際上是求一函式的導數,而積分是已知一函式的導數,求這一函式。所以,微分與積分互為逆運算。

實際上,積分還可以分為兩部分。第一種,是單純的積分,也就是已知導數求原函式,而若f(x)的導數是f(x),那麼f(x)+c(c是常數)的導數也是f(x),也就是說,把f(x)積分,不一定能得到f(x),因為f(x)+c的導數也是f(x),c是無窮無盡的常數,所以f(x)積分的結果有無數個,是不確定的,我們一律用f(x)+c代替,這就稱為不定積分。

而相對於不定積分,就是定積分。

所謂定積分,其形式為∫f(x) dx (上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數,而不是一個函式。

定積分的正式名稱是黎曼積分,詳見黎曼積分。用自己的話來說,就是把直角座標系上的函式的圖象用平行於y軸的直線把其分割成無數個矩形,然後把某個區間[a,b]上的矩形累加起來,所得到的就是這個函式的圖象在區間[a,b]的面積。實際上,定積分的上下限就是區間的兩個端點a、b。

我們可以看到,定積分的本質是把圖象無限細分,再累加起來,而積分的本質是求一個函式的原函式。它們看起來沒有任何的聯絡,那麼為什麼定積分寫成積分的形式呢?

定積分與積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:

若f'(x)=f(x)

那麼∫f(x) dx (上限a下限b)=f(a)-f(b)

牛頓-萊布尼茲公式用文字表述,就是說一個定積分式的值,就是上限在原函式的值與下限在原函式的值的差。

正因為這個理論,揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。

3.0微積分

積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。

一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。

其中:[f(x) + c]' = f(x)

一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。

積分 integral 從不同的問題抽象出來的兩個數學概念。定積分和不定積分的統稱。不定積分是為解決求導和微分的逆運算而提出的。

例如:已知定義在區間i上的函式f(x),求一條曲線y=f(x),x∈i,使得它在每一點的切線斜率為f′(x)= f(x)。函式f(x)的不定積分是f(x)的全體原函式(見原函式),記作 。

如果f(x)是f(x)的一個原函式,則 ,其中c為任意常數。例如, 定積分是以平面圖形的面積問題引出的。y=f(x)為定義在[a,b〕上的函式,為求由x=a,x=b ,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b〕分成n等分:

a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分割槽間,f(x)為被積函式,a,b分別稱為積分的上限和下限。

當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式

微分一元微分

定義:設函式y = f(x)在x.的鄰域內有定義,x0及x0 + δx在此區間內。

如果函式的增量δy = f(x0 + δx) − f(x0)可表示為 δy = aδx + o(δx)(其中a是不依賴於δx的常數),而o(δx0)是比δx高階的無窮小,那麼稱函式f(x)在點x0是可微的,且aδx稱作函式在點x0相應於自變數增量δx的微分,記作dy,即dy = aδx。

通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式的微分與自變數的微分之商等於該函式的導數。

因此,導數也叫做微商。

當自變數x改變為x+△x時,相應地函式值由f(x)改變為f(x+△x),如果存在一個與△x無關的常數a,使f(x+△x)-f(x)和a·△x之差關於△x→0是高階無窮小量,則稱a·△x是f(x)在x的微分,記為dy,並稱f(x)在x可微。函式可導必可微,反之亦然,這時a=f′(x)。再記a·△x=dy,則dy=f′(x)dx。

例如:d(sinx)=cosxdx。

幾何意義:

設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δy|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。

多元微分

同理,當自變數為多個時,可得出多元微分得定義。

運演算法則:

dy=f'(x)dx

d(u+v)=du+dv

d(u-v)=du-dv

d(uv)=du·v+dv·u

d(u/v)=(du·v-dv·u)/v^2

2樓:仁倫中婉

微分和積分是相反的一對運算。微分是求變化率,積分是求變化總量。比如,求加速度,就是用微分,即對速度進行求導,如果是求路程,就是對速度在某個時間段內

進行積分。

微分與積分是什麼,有區別麼?

3樓:匿名使用者

微分和積分是相反的一對運算。微分是求變化率,積分是求變化總量。比如,求加速度,就是用微分,即對速度進行求導,如果是求路程,就是對速度在某個時間段內 進行積分。

4樓:匿名使用者

微分:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分。

積分:積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。

直觀地說,對於一個給定的正實值函式,在一個實數區間上的定積分可以理解為在座標平面上,由曲線、直線以及軸圍成的曲邊梯形的面積值(一種確定的實數值)。

微分與積的區別如下::

1、產生時間不同:

微分:早在希臘時期,人類已經開始討論「無窮」、「極限」以及「無窮分割」等概念。這些都是微積分的中心思想;雖然這些討論從現代的觀點看有很多漏洞,有時現代人甚至覺得這些討論的論證和結論都很荒謬,但無可否認,這些討論是人類發展微積分的第一步 。

積分:公元前7世紀,古希臘科學家、哲學家泰勒斯就對球的面積、體積、與長度等問題的研究就含有微積分思想。

2、數學表達不同:

微分:導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。

積分:設f(x)為函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。

3、幾何意義不同:

微分:設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲 線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δx|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。

積分:積分發展的動力源自實際應用中的需求。實際操作中,有時候可以用粗略的方式進行估算一些未知量,但隨著科技的發展,很多時候需要知道精確的數值。

要求簡單幾何形體的面積或體積,可以套用已知的公式。比如一個長方體狀的游泳池的容積可以用長×寬×高求出。

5樓:暨旋孛作

基本解釋

【一】謂積累時差。《穀梁傳·文公六年》:“閏月者,附月之餘日也,積分而成於月者也。”

範寧注:“積眾月之餘分,以成此月。”

【二】元、明

、清三代國子監考核學生學習成績、選拔人才的方法。①《元史·選舉志一》:“

泰定三年夏六月,更積分而為貢舉,並依

世祖舊制。”

②明·蘇伯衡

《送樓生用章赴國學序》:“業成然後積分,積分及格然後私試。”③《清史稿·選舉志一》:“積分歷事之法,國初行之。監生坐監期滿,撥歷部院練習政體。”

【三】(integration;integral)數學的一門學科;找出被積函式中一函式或解一微分方程的演算。

【四】(cumulative

scoring)比賽分數的總和;一個積累起來的分數,現在網上,有很多的積分活動。象各種電子郵箱,qq等。

微積分積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。

一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。

其中:[f(x)

+c]'

=f(x)

一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。

積分integral

從不同的問題抽象出來的兩個數學概念。定積分和不定積分的統稱。不定積分是為解決求導和微分的逆運算而提出的。

例如:已知定義在區間i上的函式f(x),求一條曲線y=f(x),x∈i,使得它在每一點的切線斜率為f′(x)=

f(x)。函式f(x)的不定積分是f(x)的全體原函式(見原函式),記作

。如果f(x)是f(x)的一個原函式,則

,其中c為任意常數。例如,

定積分是以平面圖形的面積問題引出的。如右上圖,y=f(x)為定義在[a,b]上的函式,為求由x=a,x=b

,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b]分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。把這一類問題的思想方法抽象出來,便得定積分的概念:

對於定義在[a,b]上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi]的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b]上的定積分,表為即

稱[a,b]為積分割槽間,f(x)為被積函式,a,b分別稱為積分的上限和下限。當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式。

以上講的是傳統意義上的積分也即黎曼積分。

導數與微分的區別,導數和微分的區別

對一個函式積復分和對它微分,制 這兩個運算互為逆運算。求原函式的過程是不定積分 運算 求導的過程是微分運算。一個函式的微分與它的導數也略有區別,微分是函式的線性增量 變化 而導數是函式的變化率 也就是函式值變化 自變數變化 導數和微分的區別?導數是函式影象在某一點處的斜率,也就是縱座標增量 y 和橫...

微分和導數有什麼區別微分與導數有什麼區別

導數和微分的區別 一個是比值 一個是增量。1 導數是函式影象在某一點處的斜率,也就是縱座標增量 y 和橫座標增量 x 在 x 0時的比值。2 微分是指函式影象在某一點處的切線在橫座標取得增量 x以後,縱座標取得的增量,一般表示為dy。擴充套件資料 設函式y f x 在x的鄰域內有定義,x及x x在此...

數學 微積分,高等數學微積分,微分和積分割槽別是什麼?詳細的。哥有很多分。

解答 1 本題一定是由引數方程所確定的函式,求引數t從0到2 經歷的曲線的弧長 2 計算弧長的積分,原本應該 ds,ds是弧長的微元,它具有空間的一般取向 3 寫成 ds dx dy 後也無法積分,進一步化為 ds dt,這樣就可以對引數積分了。4 樓主將原題目中 x f t 的函式,對t求導,得到...