1樓:sweety琪
數學必修
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈z)
其他三角函式知識:
同角三角函式基本關係
⒈同角三角函式的基本關係式
倒數關係:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的關係:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關係:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
兩角和差公式
⒉兩角和與差的三角函式公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ
倍角公式
⒊二倍角的正弦、餘弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半形公式
⒋半形的正弦、餘弦和正切公式(降冪擴角公式)
1-cosα
sin^2(α/2)=—————
2 1+cosα
cos^2(α/2)=—————
2 1-cosα
tan^2(α/2)=—————
1+cosα
萬能公式
⒌萬能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
和差化積公式
⒎三角函式的和差化積公式
α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2
積化和差公式
⒏三角函式的積化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]
向量的運算
加法運算
ab+bc=ac,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點o出發的兩個向量oa、ob,以oa、ob為鄰邊作平行四邊形oacb,則以o為起點的對角線oc就是向量oa、ob的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a?b的幾何意義:數量積a?b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應座標的乘積的和。
2樓:匿名使用者
《備課吧》30多萬份備課資料,總有您想找的!
輕輕嘆
3樓:勝利之刎
上網搞個支付寶 網上購買你要的資料呀 沒足夠的資料是學不好的
高三時你就知道了。。。
高一數學必修一習題21答案,高一數學必修一習題21答案
a組第五題 解 因為copyy a x對指數x沒什麼要求所以只要使x有意義即可1 y 2 3 x的定義域為全體實數 2 y 3 2x 1的定義域為全體實數 3 也是全體實數 4 因為1 x中x是分母所以不能得0 y 0.7 1 x的定義域為x不得0 b組第二題 解題目中給出x x 1 3所以要往上靠...
高一數學人教版必修一的抽象函式是什麼
抽象函式 是bai沒有給出具 du體解析式,只給出zhi函式的特殊dao條件或特徵的函式。版抽象函權 數形式 一般形式 y f x 冪函式 f xy f x f y 正比例函式 f x y f x f y 對數函式 f x f y f xy 三角函式 f x y f x y 2f x f y f x...
高一數學必修一,集合的運算,高一數學必修一 集合 列舉法。
1,空集時8a 8 0,a 1 2,a b含於a 1.b 代人得,a 1,1 2.b 代人得,a 8a 7 0 a 7 1所以a的取值範圍 綜上所述,a的取值範圍 或a 1 a b含於a 1.b 代人得,a 1,1 2.b 代人得,a 8a 7 0 a 7 1所以a的取值範圍 三角函式?樓上來幹嘛的...