1樓:善言而不辯
z=x3siny2
∂z/∂x=3x2siny2
∂z/∂y=x3cosy2·2y
∂2z/∂x2=6xsiny2
∂2z/∂x∂y=3x2cosy2·2y=6x2cosy2∂2z/∂y2=2x3cosy2-2x3y(-siny2)·2y=2x3cosy2+4x3ysiny2
設函式z=sin(x^2-2y) 求二階偏導數
2樓:徐少
解:dz/dx=2xcos(x2-2y)
d2z/d2x
=[2xcos(x2-2y)]'
=2=2[cos(x2-2y)-xsin(x2-2y)2x]=2[cos(x2-2y)-2x2sin(x2-2y)]dz/dy=-2cos(x2-2y)
d2z/d2y
=[-2cos(x2-2y)]'
=-2[cos(x2-2y)]'
=-2[-sin(x2-2y)](-2)
=-4sin(x2-2y)
3樓:精銳教育何老師
對x偏導2xcos(x^2-2y)
對y偏導-2cos(x^2-2y)
求z=y^x的二階偏導數
4樓:你愛我媽呀
解答過程如下:
這是一個冪指數函式
先求對函式關於x的一階偏導,則y為常數,這個函式看做指數函式。z'(x)=y^x·lny,再求對函式關於y的一階偏導z'(y)=x·y^(x-1)。
然後繼續對關於x,y分別求二階偏導數:
z'(xx)=y^x·ln2y。
z'(yy)=x(x-1)·y^(x-2)。
z'(xy)=xy^(x-1)lny+y^x·1/y=y^(x-1)+xy^(x-1)lny。
z'(yx)=y^(x-1)+xy^(x-1)lny。
5樓:si陳小七
這是一個冪指數函式
先求對函式關於x的一階偏導,則y為常數,(那這個函式可以看做指數函式)
z'(x)=y^x·lny,再求對函式關於y的一階偏導(這個函式可以看做冪函式)
z'(y)=x·y^(x-1)
然後繼續對關於x,y分別求二階偏導數
z'(xx)=y^x·ln2y
z'(yy)=x(x-1)·y^(x-2)z'(xy)=xy^(x-1)lny+y^x·1/y=y^(x-1)+xy^(x-1)lny
z'(yx)=y^(x-1)+xy^(x-1)lny這個**應該看得更清楚些,希望可以幫到你們。
6樓:吉祿學閣
^^z=e^(xlny)
dz=e^(xlny)*(lnydx+xdy/y)z'|x=e^(xlny)*lny
z'|y=e^(xlny)*(x/y)
則:z''|x^2=e^(xlny)*(lny)*(lny)=(lny)^2*y^x;
z''|y^2=e^(xlny)*(x/y)*(*x/y)+e^(xlny)*(-x/y^2)
=e^(xlny)*(x/y^2)*(x-1)=x*(x-1)*y^(x-2)
z''|xy=e^(xlny)*(x/y)*lny+e^(xlny)*(1/y)
=e^(xlny)*(1/y)*(xlny+1)=y^(x-1)*(xlny+1)
7樓:匿名使用者
^z=y^x
z'x = lny y^x
z''xx = lny lny y^x
z'y = xy^(x-1)
z''yy = x(x-1)y^(x-2)z''xy = y^x/y * y^x + lny xy^(x-1) = y^(2x-1) + lny xy^(x-1)
多元函式求二階偏導,怎麼求多元函式的二階偏導數?
令內 u xy 容2 v x 2y z x z u u x z v v x z u y 2 z v 2xy 2z x y 2y z u y 2 2z u2 2xy 2z u v x 2 2x z v 2xy 2z u v 2xy 2z v2 x 2 dz dx y 2f 1 2xyf 2 d 2z ...
y確定隱函式zzx,y,求二階偏導
方程化為zlnz xy,關於x求導,1 lnz dz dx y,所以,偏導數dz dx y 1 lnz 關於y求導,1 lnz dz dy x,所以,偏導數dz dy x 1 lnz 設方程x z lnz y確定隱函式z x,y 求全微分dz baix z lnz y d x z d lnz y z...
設函式f具有二階連續的偏導數,u f(xy,x y),則
由u f xy,x y 得 u?x yf f u?x?y 內yf 1 f 2 y f 1 y xf 容11 f 12 xf 21 f 22 f 1 xyf 11 x y f 12 f 22 設函式f具有二階連續的偏導數,u f xy,x y 求?2u?x?y 由u f baixy,x y 兩邊對x求...