1樓:哈哈哈哈
^令內 u=xy^容2 v=x^2y
∂z/∂x=(∂z/∂u)(∂u/∂x)+(∂z/∂v)(∂v/∂x)=(∂z/∂u)y^2+(∂z/∂v)2xy
∂2z/∂x∂y=2y(∂z/∂u)+y^2[(∂2z/∂u2)2xy+(∂2z/∂u∂v)x^2]+2x(∂z/∂v)+2xy[(∂2z/∂u∂v)2xy+(∂2z/∂v2)x^2]
2樓:帷幄致樽
dz/dx=y^2f'1+2xyf'2
d^2z/dxdy=2yf'1+y^2f''13+2xf'2+2xyf''14
3樓:匿名使用者
很抱歉我是學藥學專業的,雖然接觸了很多高等數學知識,但表示畢業2年全給老師了。。。
怎麼求多元函式的二階偏導數? 10
4樓:兔斯基
如下,先求出一階偏導數,
再求二階
如下詳解,望採納
求多元函式的二階偏導數?
5樓:匿名使用者
這是多元函式,求二階混合偏導數,先求對自變數x的偏導數,再求對自變數z的二階混合偏導數,求解過程如下圖所示。
6樓:匿名使用者
建議好好請教身邊數學老師,給你解答。一般人不懂的。
7樓:匿名使用者
ðu/ðx=e^(x+yz)
ð²u/ðxðz=e^(x+yz)y
8樓:匿名使用者
建議你向高等數學老師當面**一下。**之前,你先再看一下高數教材中二階偏導數的相關課程
9樓:匿名使用者
這個我也不知道,因為我的數學學的不好,你可以去問問你的數學老師
多元函式的複合函式二階偏導公式是什麼?為什麼書上沒有呢?
10樓:哎喲
公式為:y'=2x的導數為y''=2。
y=x²的導數為y'=2x,二階導數即y'=2x的導數為y''=2。
如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)<0成立,那麼上式的不等號反向。
11樓:看完就跑真刺激
各個分量的偏導數為0,這是一個必要條件。充分條件是這個多元函式的二階偏導數的行列式為正定或負定的。
如果這個多元函式的二階偏導數的行列式是半正定的則需要進一步判斷三階行列式。如果這個多元函式的二階偏導數的行列式是不定的,那麼這時不是極值點。
以二元函式為例,設函式z=f(x,y)在點(x。,y。)的某鄰域內有連續且有一階及二階連續偏導數,又fx(x。,y。),fy(x。,y。)=0,
令fxx(x。,y。)=a,fxy=(x。,y。)=b,fyy=(x。,y。)=c
則f(x,y)在(x。,y。)處是否取得極值的條件是
(1)ac-b*b>0時有極值
(2)ac-b*b<0時沒有極值
(3)ac-b*b=0時可能有極值,也有可能沒有極值如果是n元函式需要用行列式表示。
12樓:化化墨跡
一般都會用對應法則加下標來寫
多元函式求二階偏導數.圖中打圈的那個二階導怎麼求的
多元複合函式高階偏導求法
13樓:戰wu不勝的小寶
多元複合函式高階偏導求法如下:
一、多元複合函式偏導數
上面公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫。
偏導數的幾何意義:
表示固定面上一點的切線斜率。
偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。
高階偏導數:如果二元函式 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函式的偏導數稱為 z=f(x,y) 的二階偏導數。二元函式的二階偏導數有四個:
f"xx,f"xy,f"yx,f"yy。
f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函式再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。
14樓:匿名使用者
高等數學第七版p70頁,例8
複合函式求導:δ
u/δx=(δu/δr)*(δr/δx)=-x/(r^3)-x/(r^3) 關於x的偏導數:(δu/δx)^2=δ[-x/(r^3)]/δx=-
=-=-
=-=-1/r^3+3x^2/r^5
15樓:zero醬
求複合函式的偏導數,關鍵在於找好路徑。鏈式法則是一個很好的解決工具。
拓展資料:
16樓:閃亮登場
多元複合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。
解決多元複合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元複合函式。
一、多元複合函式偏導數
公式可以簡單記為「連線相乘,分線相加」;也可以藉助微分形式不變性,即函式有幾個中間變數,則偏導有幾部分組成(不排除個別部分為零).
二、多元複合函式二階偏導數
對於複合函式二階偏導數,關鍵需要理解函式對中間變數的偏導數依然為多元複合函式,其關係與原來因變數與自變數關係完全一致,即:
先畫出關係圖:
解決多元複合抽象函式高階偏導問題關鍵理清因變數與自變數關係,在解題過程中最後畫出關係圖,這樣可以避免多寫或漏寫.
多元函式微分 二階偏導連續,混合偏導數就一定相等嗎?為什麼
一定相等。因為先對x求偏導或是先對y求偏導沒有區別,對x求偏導時y看作常數,對y求偏導x看作常數。所以無論先對哪個求導結果一樣。不應定,要看具體情況 為什麼二階偏導數連續 混合偏導就相等啊?50 f x,y x 3y 3sin 1 xy xy 0.f x,y 0,xy 0.1.xy 0,顯然有 fx...
y確定隱函式zzx,y,求二階偏導
方程化為zlnz xy,關於x求導,1 lnz dz dx y,所以,偏導數dz dx y 1 lnz 關於y求導,1 lnz dz dy x,所以,偏導數dz dy x 1 lnz 設方程x z lnz y確定隱函式z x,y 求全微分dz baix z lnz y d x z d lnz y z...
高等數學二元函式偏導高等數學。多元函式求偏導
手寫公式是隱函式求導得出的。本題是顯函式。要用手寫公式,應這樣寫回 令 f x 答2 y 2 z 2 u,則 fu 1,fx 2x 2z z x 2x 4xzsiny 2x 4x 3 siny 2,fy 2y 2z z y 2x 2zx 2cosy 2x x 4sin2y,u x fx fu 2x ...