利用取對數的方法求limx趨於無窮大sin

2021-03-03 22:10:47 字數 3040 閱讀 7737

1樓:匿名使用者

^^根據該衍生物得到du

x的定zhi義趨向於0,[1-cos(x ^ 2)dao] /(1-cosx)限制

= [cos0 ^內 2-餘弦容(χ^ 2)] / (cos0-cosx)限制

= x 由

[(cos0-cosx)/分(0- x)的]乘以極限

= x餘弦(χ^ 2)的衍生物/ cosx數目限制

= x * [ - 2sin(χ^ 2)} /( - sinx的)極限

= 2sin(x ^ 2)* [x / sinx的]限

= 2sin(x ^ 2)* [(x-0)/(sinx的-sin0)]只

= 2sin(x ^ 2)* [ 1 /(sinx的導數)]只

= 2sin(x ^ 2)*(1 / cosx)限制

= 2sin(0 ^ 2)*(1 / cos0)= 0

求limx趨於無窮大{(2x+3)/(2x+1)}^(x+1)的極限。

2樓:之那年青春正好

極限來簡自介:

「極限」是bai數學中的分支—du—微積分的基礎概zhi念,廣義的「極限」是指「無限

dao靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

定義:設為一個無窮實數數列的集合。如果存在實數a,對於任意正數ε (不論其多麼小),總存在正整數n,使得當n>n時。

不等式成立,那麼就稱常數a是數列 的極限,或稱數列 收斂於a。

自變數趨近有限值時函式的極限:

設函式f(x)在點x0的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε,總存在正數δ,使得當x滿足不等式

利用取對數的方法求冪指函式的極限 10

3樓:趙磚

lim(x->0)[(e^x+x)^(1/x)]=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)

=e^[(1+1)/(1+0)]

=e^2

lim(x->0)

=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)

=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}=e^[ln│abc│/3]

=(abc)^(1/3).

4樓:匿名使用者

^因為lim ln(e^x+x)^(1/x)=limln(e^x+x)/x ,

limln( e^x+x)~ln(1+x+x)=limln(1+2x)=2x,

則limln(e^x+x)^(1/x)=2,則原式子=e^2

2.因為 ln(sin1/x+cos1/x)^(x)=ln(sin1/x+cos1/x)/(1/x)

x →∞, 則1/x→∞

則limln(sin1/x+cos1/x)=limln(sin1/x+1)=sin1/x

limln(sin1/x+cos1/x)^(x)=limsin1/x/(1/x)=1

則原式子=e

3, limln(cos2x)^(3/x^2)=lim3ln(1-2sin^2x)/x^2=lim3(-2sin^2x)/x^2

=-6lim(sinx)^2/x^2

=-6則原式子=e^(-6)

求大神幫忙! x->∞,lim(sin2/x+cos1/x)^x按下面這種方法求極限,畫橫線這兩處

5樓:一世傾城浮華

因為括號裡+1前邊的那部分在x趨於無窮大時趨於無窮小,ln(x+1)~x,然後1就沒了,ln也沒了

怎麼利用取對數的方法求下列冪指函式的極限?

6樓:匿名使用者

^解:lim(x->0)[(e^x+x)^(1/x)]=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)=e^[(1+1)/(1+0)]

=e^2

lim(x->0)

=lim(x->0) (應用對數性質取對數)=e^ (應用初等函式的連續性)

=e^ (0/0型極限,應用羅比達法則)=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}=e^[ln│abc│/3]

=(abc)^(1/3)。

7樓:夏侯連枝實春

^^3]^(1/x]}

(應用對數性質取對數)

=e^(應用對數性質取對數)

=e^(0/0型極限;(1+0)]

=e^2

lim(x->0)[(a^xln│a│+b^xln│b│+c^xln│c│)/0)

(0/0型極限;0)[ln(e^x+x)/x]}(應用初等函式的連續性)

=e^=e^[ln│abc│/x]}

(應用初等函式的連續性)

=e^=lim(x->3]

=(abc)^(1/0){e^[(ln(a^x+b^x+c^x)-ln3)/

8樓:匿名使用者

^lim(e^x+x)^(1/x) lim [(a^x+b^x+c^x)/3]^(1/x)=lime ^xin(1+1/x^2)=lime^lim1/x=1

in(1+1/x^2)~1/x^2

冪指函式

既像冪函式,又像指數函式,二者的特點兼而有之。

作為冪函式,其冪指數確定不變,而冪底數為自變數;相反地,指數函式卻是底數確定不變,而指數為自變數。

冪指函式就是冪底數和冪指數同時都為自變數的函式。這種函式的推廣,就是廣義冪指函式。

求limx趨於無窮大2x32x1x

極限來簡自介 極限 是bai數學中的分支 du 微積分的基礎概zhi念,廣義的 極限 是指 無限 dao靠近而永遠不能到達 的意思。數學中的 極限 指 某一個函式中的某一個變數,此變數在變大 或者變小 的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而 永遠不能夠重合到a 永遠不能夠等於a,但...

求大神用取對數的方法求極限,利用取對數的方法求冪指函式的極限

3 1 x 應用對數性質取對數 e 內 應用對數性質取對數 e 0 0型極容限 1 0 e 2 lim x 0 a xln a b xln b c xln c 0 0 0型極限 0 ln e x x x 應用初等函式的連續性 e e ln abc x 應用初等函式的連續性 e lim x 3 abc...

求極限lim11x2xx趨於無窮大

lim x inf 1 1 x 1 x2 x lim 1 x 1 x2 x lim x lim x2 x 1 x 1 x2 x 應用重要極限 e lim x 1 x e lim 1 1 x e 1 0 e 原式 lime x ln 1 1 x 1 x 2 x趨於無窮大 其中 x ln 1 1 x 1...