1樓:匿名使用者
增根,數學名詞。是指方程求解後得到的不滿足題設條件的根。
一元二次方程與分式方程和其它產生多解的方程在一定題設條件下都可能有增根。在分式方程化為 整式方程的過程中,分式方程解的條件是使原方程分母不為零。若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根。
一、外文名:extraneous root別 名:原分式方程的增根
二、研究領域:數學
三、**
對於分母的值為零時,這個分數無意義,所以不允許分母為0,即本身就隱含著分母不為零的條件。當把分式方程轉化為整式方程以後,這種限制取消了,換言之,方程中未知數的值範圍擴大了,如果轉化後的整式方程的根恰好是原方程未知數的允許值之外的值,那麼就會出現增根。四、
2樓:youth小杰
增根,數學名詞。是指方程求解後得到的不滿足題設條件的根。
增根的解釋:對於分母的值為零時,這個分數無意義,所以不允許分母為0,即本身就隱含著分母不為零的條件。
當把分式方程轉化為整式方程以後,這種限制取消了,換言之,方程中未知數的值範圍擴大了,如果轉化後的整式方程的根恰好是原方程未知數的允許值之外的值,那麼就會出現增根。
增根的不可忽視性:許多人解方程時,得到了增根,比如說能量是負值,一般的人都會將這個忽視掉,但這些值是挺令人尋味的。著名的物理學家狄拉克利用相對論、 量子力學尋找粒子的能量時,他發現某個粒子的能量和其動量緊密相關。
後來事實證明,第二個根,也就是為負的那個根,正是理論的關鍵:世界上既有粒子,也有反粒子。負能量就是用來解釋什麼是反粒子。
3樓:雙魚貝貝
所謂增根,就是使分式方程分母等於0的根 一般的,形容一個方程的解為根,增根的情況是出自分式方程,在約去方程兩邊的分母時,也就忽略了分式方程的增根情況,就是分母可能為0,那麼這個式子就沒有意義。
所以在解完分式方程後,需要檢驗。一般檢驗如下: 1一般的分式方程:
檢驗,當x=(你解的數值)時,最檢公分母***x≠0 ∴此分式方程的解為x=0(最檢公分母=0,所以x=0是方程的增根,∴此方程無解) 2分式方程應用題:經檢驗得,當x=(你解的數值),1最檢公分母≠0,2問題有意義,∴方程的解為***xx。
增根是一個數學用語,其定義為在方程變形時,有時可能產生不適合原方程的根。
增根(extraneous root ),在分式方程化為整式方程的過程時,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根
增根≠無解
4樓:中素枝壬鵑
2次方程中在方程變形時,有時可能產生不適合原方程的根,這種根叫做原方程的增根。如果一個分式方程的根能使此方程的公分母為零,那麼這個根就是原方程的增根。增根的產生的原因:
對於分式方程,當分式中,分母的值為零時,無意義,所以分式方程,不允許未知數取那些使分母的值為零的值,即分式方程本身就隱含著分母不為零的條件。當把分式方程轉化為整式方程以後,這種限制取消了,換言之,方程中未知數的值範圍擴大了,如果轉化後的整式方程的根恰好是原方程未知數的允許值之外的值,那麼就會出現增根。
分式方程兩邊都乘以最簡公分母化分式方程為整式方程,這時未知數的允許值擴大,因此解分式方程容易發生増根。
5樓:鄭陽接迎蕾
使分式無意義的解叫做增根。
比如解得
x=1原式是
5/x-1
代入以後
分母為0
分式無意義。
解出來有增根的分式方程無解。
(全是自己手打,我也剛學。)
6樓:淳于春犁璧
將求出的值代入原方程,分式化整式後解出來分母是0,那這個根就是增根.
無解:看這個方程
x^2+x+1=0這個方程叫做無解~~
ps:還值得注意的是,"根"只是對一元方程而言的.多元方程就不能叫"根"了,應該叫"解"
在方程變形時,有時可能產生不適合原方程的根,這種根叫做原方程的增根.因為解分式方程時可能產生增根,所以解分式方程必須檢驗.為了簡便,通常把求得的根代入變形時所乘的整
增根:假設--比如--解出一個一元方程有x1=-1x2=0
x3=1
但是題目要求x>0
那麼x1
x2就是增根
還有將求出的值代入原方程,分式化整式後解出來分母是0,那這個根就是增根.
無解:看這個方程
x^2+x+1=0這個方程叫做無解~~
ps:還值得注意的是,"根"只是對一元方程而言的.多元方程就不能叫"根"了,應該
7樓:匿名使用者
根就是,解,答案的意思
所謂的增根是指,將得到的解,帶入執行,會出現不可能存在的現象,例如出現根號下負5,涉及取值範圍之類.為了防止出現增根,要將解值帶入執行進行驗證
8樓:9876543210戴
增根(another dick),在分式方程化為整式方程的過程中,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根。
在方程變形時,有時可能產生不適合原方程的根,這種根叫做原方程的增根。
如果一個分式方程的根能使此方程的公分母為零,那麼這個根就是原方程的增根。
增根的產生
增根是在將方程式進行變形之後產生的情況,其實最嚴格的變形是不會產生增根的,因為定義域不發生變化,但一般情況下,方程在經過變形之後定義域發生了變化。如:(x+1)/(x-1)=0的定義域是x≠1,經過變形後得到的方程是(x+1)(x-1)=0,這個時候就將定義域擴大到了r,這就是造成增根的根本原因。
簡單地說,定義域的變化造成方程根的變化,計算過程將定義域擴大的話就造成增根,計算過程將定義域縮小的話就造成失根;不改變定義域的話根的情況就不會有變化。
9樓:逝水
增根是什麼,2分鐘瞭解什麼是方程的增根
分式方程的增根是什麼意思
10樓:候文康封冷
因為是分式方程,所以求解的時候通過通分、消去分母等等方式擴大瞭解的範圍,產生了不滿足原方程的根,那就是增根。通常分式方程增根會使得原方程的分母等於0。
11樓:_月城
1定義:在方程變形時,有時
12樓:魚躍紅日
在分式方程化為整式方程的過程中,分式方程解的條件是使原方程分母不為零。
若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根。
13樓:匿名使用者
分式方程化為整式方程時,你是不是「兩邊同時乘以***x」
這個變化是同解變化的前提,是你的那個***x是不等於0的。
但是有時候,那個***x等於0,能恰好滿足整式方程,而它不該是分式方程的解的。這就是增根了。
「如果一個分式方程有增根」這句話說明什麼意思?增根是什麼意思?
14樓:匿名使用者
意思:也就是這個根(或解)使分式的分母為0,而分母為0是無意義的,所以為增根,也就是解方程時增加出來的根。
增根:是指方程求解後得到的不滿足題設條件的根。
在分式方程化為整式方程的過程中,分式方程解的條件是使原方程分母不為零。若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根。
擴充套件資料
增根的不可忽視性
許多人解方程時,得到了增根,比如說能量是負值,一般的人都會將這個忽視掉,但這些值是挺令人尋味的。
著名的物理學家狄拉克利用相對論、量子力學尋找粒子的能量時,他發現某個粒子的能量和其動量緊密相關,即e^2=p^2+m^2(p為動量,m為粒子的質量)。
解得e=±(p^2+m^2)^(1/2),你肯定想保留正根,因為你知道能量不會是負值,但數學家們告訴狄拉克,你不能忽略負值,因為數學告訴我有兩個根,你不能隨便丟掉。
後來事實證明,第二個根,也就是為負的那個根,正是理論的關鍵:世界上既有粒子,也有反粒子。負能量就是用來解釋什麼是反粒子的。
15樓:匿名使用者
有增根,也就是這個根(或解)使分式的分母為0,而分母為0是無意義的,所以為增根,也就是解方程時增加出來的根。
如1/(x+2)-1/x =5有增根,則
增根可能為x=-2或x=0
16樓:血地斬
狹義:在分式方程化為整式方程的過程中,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根。廣義:
增根是在忽略取值範圍的情況下產生的方程的解。
如果說:方程有增根,蘊含的資訊有:1.該方程無解。增根和解勢如水火不可共存。2. 該方程是分式方程。
為什麼叫增根呢?原因不外是分式方程因其分母不可為零所以限制了未知數的取值範圍。而增根則是在假設取值範圍無限的時候得到的答案。增根實際上沒有意義,但是數學就是假設假設再假設的學科嘛~~
note:增根是在忽略取值範圍的情況下產生的方程的解。比如用二次該方程算所需金額時可能會出現負數,那麼因金額不能是負數所以可以忽略負的增根。
但是有的時候取值範圍只是想當然的定下的,比如根號裡不能取負數,但脫離了有理數這個限制就不存在了;再比如求能量時的出的負數,不能因為覺得「能量怎麼會負?」來忽略增根,反倒要認真研究能量是負數時的情況,假設出「負離子」「反物質」……
note2:初中考試時遇到「一個方程有增根,增根為x=1,則當x=1時分時方程其中一個的分母會為零,且將該分式方程化為整事方城時x=1會是整事方城的解。
17樓:棟然冒舞
解:例題:(1)x/(x+1)=2x/(3x+3)+1兩邊乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要檢
驗經檢驗,x=-3/2是方程的解
(2)2/x-1=4/x^2-1
兩邊乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1分式方程要檢驗
經檢驗,x=1使分母為0,是增根.
所以原方程2/x-1=4/x^2-1
無解.解分式方程記得要檢驗是否是曾根
分式中增根是什麼意思?說具體一點
18樓:匿名使用者
對於分式方程,當來分式源中,分母的值為零時bai,無意義,所以分式方程,du不允許未知數取那些zhi使分母的值為零的dao值,即分式方程本身就隱含著分母不為零的條件。當把分式方程轉化為整式方程以後,這種限制取消了,換言之,方程中未知數的值範圍擴大了,如果轉化後的整式方程的根恰好是原方程未知數的允許值之外的值,那麼就會出現增根。
分式方程兩邊都乘以最簡公分母化分式方程為整公分母的值不為0,則此解是分式方程的解,若最簡公分母的值為0,則此解是增根。
數學中增根是什麼意思,數學中的增根是什麼
在方程變形時,有時可能產生不適合原方程的根,這種根叫做原方程的增根。如果一個分專式方程屬的根能使此方程的公分母為零,那麼這個根就是原方程的增根。增根的產生的原因 對於分式方程,當分式中,分母的值為零時,無意義,所以分式方程,不允許未知數取那些使分母的值為零的值,即分式方程本身就隱含著分母不為零的條件...
數學裡什麼是增根,數學中增根是什麼意思
在方bai程變形時,有時可du能產生不適合原方程的根,zhi這種根 dao叫做原方程的增根。如果一個分專式方程的根能使屬 此方程的公分母為零,那麼這個根就是原方程的增根。增根的產生 增根是在將方程式進行變形之後產生的情況,其實最嚴格的變形是不會產生增根的,因為定義域不發生變化,但一般情況下,方程在經...
數學中增根是什麼,數學中,什麼叫做增根,
增根是解原方程得到的,但又不適合原方程的根,例如方程 x 2 3x 4 x 2 3x 2 0,我們在解這個方程的時候由x 2 3x 4 0得x 1,x 4,但是這裡的x 1就是一個增根,因為分母不能為0 1 解方程去分母,應乘不為零的代數式,但代數式有字母,不知道是否為零。求得的解使分母為零,這時的...