1樓:匿名使用者
^這個要自己用待定係數去配。因為1+x^3=(1+x)(1-x+x^2)
所以先令1/(1+x^3)=a/(1+x)+(bx+c)/(1-x+x^2)
通過通分化簡對比左專右兩邊分子得屬:a+b=0,-a+b+c=0,a+c=1
求得a=1/3,b=-1/3,c=2/3
所以,∫[1/(1+x^3)]dx=(1/3)∫[1/(1+x)]dx+∫[(-x/3+2/3)/(1-x+x^2)]dx
=(1/3)∫[1/(1+x)]dx-(1/6)∫[(2x-1)/(1-x+x^2)]dx+(1/2)∫[1/(1-x+x^2)]dx
=(1/3)ln|x+1|-(1/6)ln|x^2-x+1|+(1/√3)arctan[(2x-1)/√3]+c
=(1/3)ln[|x+1|/√(x^2-x+1)]+(1/√3)arctan[(2x-1)/√3]+c
2樓:匿名使用者
1/(1+x³)=1/(1+x)(1-x+x²)=1/3(1+x)-(2x-1)/6(x²-x+1)+1/2(x²-x+1)
所以原來式=1/3*ln(1+x)-1/6*ln(x²-x+1)+1/2∫1/(x²-x+1)dx
[這裡是當x>-1時,如果x<-1那麼就是源-1/3*ln-(1+x)],前面兩項很容bai易,這裡重點介紹下du第三項
首先有zhi這麼個公式:∫1/(x²+a²)=1/a*arctan(x/a) (具體過程dao你可以自己算,設x=atanθ就可求得)
那麼∫1/(x²-x+1)dx =∫1/[(x-1/2)²+3/4]dx,我想剩下的你自己應該能求了吧。
希望能對你有所幫住,有不理解的地方再問我。
求不定積分∫[1/(1+x^3)]dx 要步驟
3樓:留秀雲建鳥
^||1+x^3=(x+1)(x^2-x+1)
用待定係數法:a/(x+1)+(bx+c)/(x^2-x+1)=1/(x+1)(x^2-x+1)
得a=1/3,b=-1/3,c=2/3
所以∫[1/(1+x^3)]dx
=1/3∫(1/(x+1))dx-1/3∫((x-2)/(x^2-x+1))dx
其中1/3∫(1/(x+1))dx=1/3ln|x+1|+c
因為d(x^2-x+1)=(2x-1)dx,所以x-2=1/2(2x-1)-3/2
∫((x-2)/(x^2-x+1))dx=1/2∫(d(x^2-x+1)/(x^2-x+1))-3/2∫(1/(x^2-x+1))dx
其中∫(d(x^2-x+1)/(x^2-x+1))=ln|x^2-x+1|+c
∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根號3/2)^2))
因為∫(dx/(x^2+a^2))=(1/a)arctan(x/a)
所以∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根號3/2)^2))
=(2/根號3)arctan((x-1/2)/(根號3/2))+c
在乘上係數,整理∫[1/(1+x^3)]dx=1/3ln|x+1|-1/6|x^2-x+1|+(1/根號3)arctan((2x-1)/根號3)+c
4樓:童雲德慶戌
^∫(1-x)/(1+x^3)dx
這個就需要用因式分解
1+x^3=(1+x)(x^2-x+1)
將(1-x)化成這兩個因式的加和
(1-x)=(2/3)(x^2-x+1)-(1/3)(2x-1)(x+1)
∫(1-x)/(1+x^3)dx
=∫[(2/3)(x^2-x+1)-(1/3)(2x-1)(x+1)]/(1+x^3)
dx=(2/3)∫1/(x+1)dx
-(1/3)
∫[(2x^2-2x+2)+(3x-3)]/(x^2-x+1)
dx=(2/3)
ln(x+1)-(2/3)x+(1/2)∫1/(x^2-x+1)d(x^2-x+1)+
(√3/3)arctan[(2x-1)/√3]
=(2/3)
lnix+1i-(2/3)x+(1/2)lnix^2-x+1i+(√3/3)arctan[(2x-1)/√3]+c
解答完畢,請指教,真麻煩啊呀
x 3 dx,求不定積分, 1 x 3 dx,求不定積分
1 x 3dx x 3 dx x 2 2 c 1 2x c 1 x dx 1 2x c 不定積分 1 1 x 3 dx 有什麼好方法 1 x 1 x x 1 設 a x 1 bx c x x 1 通分後計算分母得1,所以 a x x 1 bx c x 1 1 a b x a b c x a c 1 ...
x2xx1dx等於多少x2xx1dx等於多少
設t x 1 2,則x 2 x 1 t 2 3 4 x 2 2 t 1 2 2 2 t 2 t 9 4 原式 1 t 2 3 4 t 3 2 t 2 3 4 2 dt 2 3 arctan 2t 3 1 2 t 2 3 4 3 2 c 4 3 arctan 2t 3 1 2t 2 t 2 3 4 c...
3 x 1 解方程,詳細過程 ,5 4 3 x 1 解方程,詳細過程 ?
5 4 3 x 1 解 20 3 5x 1 5x 1 20 3 5x 20 3 1 x 17 15或者一又十五分之二 5 4 3 x 1 解 20 3 5x 1 5x 20 3 1 5x 17 3 x 17 15 4 3 x 1 5 x 4 3 1 5 x 20 15 3 15 x 17 15 4 ...