為什麼標準正態分佈函式0 0 5 請哪位大師能把詳

2021-03-11 08:40:52 字數 1493 閱讀 3099

1樓:薔祀

解:如果隨機變數copyx服從標準正態分佈,即x~n(0,1)

概率密度為 f(x)=(1/√2π)exp(-x^2/2)

而其中exp(-x^2/2)為e的-x^2/2次方,其定義域為(-∞,+∞),從概率密度表示式可以看出,f(x)是偶函式,即f(x)的影象關於y軸對稱。

φ(x)定義為服從標準正態分佈的隨機變數x的分佈函式,其值為對f(x)關於x積分,從-∞積到x。從f(x)影象上看,φ(x)的值相當於f(x)曲線一下,x軸曲線以上,區域為(-∞,x)這段的面積。由於f(x)為偶函式,且有分佈函式性質φ(+∞)=1,可以求出φ(0)=0.

5。擴充套件資料

正態分佈的特點:

①密度函式關於平均值對稱

②平均值與它的眾數以及中位數是同一數值。

③函式曲線下68.268949%的面積在平均數左右的一個標準差範圍內。

④95.449974%的面積在平均數左右兩個標準差的範圍內。99.

730020%的面積在平均數左右三個標準差的範圍內。99.993666%的面積在平均數左右四個標準差的範圍內。

⑤函式曲線的反曲點(inflection point)為離平均數一個標準差距離的位置。

2樓:乾隆宸翰

首先從正態分佈的概率抄密度入手

如果隨機bai變數x服從標準正du態分佈,zhi即x~n(0,1),概率密度為

其中exp(-x^2/2)為e的-x^2/2次方定義域為(-∞,+∞)

從概率密度表示式可以看出,f(x)是偶函式,即f(x)的影象關於y軸對稱

φ(x)定義為服從標準正態分佈的隨機變數x的分佈函式,其值為對f(x)關於x積分,從-∞積到x。從f(x)影象上看,φ(x)的值相當於f(x)曲線一下,x軸曲線以上,區域為(-∞,x)這段的面積。由於f(x)為偶函式,且有分佈函式性質φ(+∞)=1,知

φ(0)=0.5

解答的很詳細吧,希望能夠幫助你,不懂可以追問。

3樓:匿名使用者

因為正態分佈影象是關於y軸對稱的啊,總概率為1,當然φ(0)=0.5

求證標準正態分佈函式φ(-x)=1–φ(x)

4樓:巴山蜀水

^其詳細過程可以是,∵x~n(0,1),∴其密度函式f(x)=[1/√(2π)]e^(-x²/2)【設a=1/√(2π)】。

∴φ(x)=∫(-∞,x)f(x)dx=a∫(-∞,x)e^(-x²/2)dx。∴φ(-x)=a∫(-∞,-x)e^(-x²/2)dx。

對∫(-∞,-x)e^(-x²/2)dx。令x=-t,∴∫(-∞,-x)e^(-x²/2)dx=∫(t,∞)e^(-t²/2)dt=∫(x,∞)e^(-x²/2)dx,

∴φ(x)+φ(-x)=a[∫(-∞,x)e^(-x²/2)dx+∫(x,)e^(-x²/2)dx]=a[∫(-∞,∞)e^(-x²/2)dx=1。

∴ φ(-x)=1-φ(x)。

供參考。

為什麼標準正態分佈中111,正態分佈15等於115為什麼

x 抄n 1,4 當然不是標準正態分佈 但是計襲算的時候 式子裡不是已經做出了先減去1,再除以2的處理了麼?x n a,b2 那麼 x a b n 0,1 那樣得到的就是標準正態分佈,寫出來了 表示的就是標準正態分佈的值 於是 1.5 等於1 1.5 正態分佈 1.5 等於1 1.5 為什麼?x n...

為標準正態分佈的概率分佈函式,表是怎麼計算的

標準正態分佈的分佈函式 x 的函式值,是對每個x通過近似計算下列積分得到的 x 1 2 e t 2 2 dt 標準正態分佈密度函式公式 標準正態分佈密度函式公式 62616964757a686964616fe58685e5aeb931333366306532 正態曲線呈鍾型,兩頭低,中間高,左右對稱...

什麼是標準正態分佈的上分位點以及怎樣求

標準正態分佈的上 分位點 設x n 0,1 對於任給的 0 1 稱滿足p x z 的點z 為標準正態分佈的上 分位點。當 0.01時。1 0.99。在標準正態分佈表中函式值。中找到最接近0.99的值 0.9898與0.9901,對應的x值分。別為2.32與2.33,故可取其算術平均值為上0.01分位...