不定積分dx x根號下(x 2 a 2)

2021-03-11 09:44:05 字數 5726 閱讀 4165

1樓:不是苦瓜是什麼

^|^|∫抄設x=atant 則 dx=asec^襲2(t)dt

原式=1/|baia|∫sec^2(t)dt/(tantsect)

=-1/|a|∫sectdt

=-1/|a| *ln(sec t + tan t) +c

=-1/|a|*ln+c

某一個函式中的某

zhi一個變數,此變數在dao變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。

求極限基本方法有

1、分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入;

2、無窮大根式減去無窮大根式時,分子有理化;

3、運用洛必達法則,但是洛必達法則的運用條件是化成無窮大比無窮大,或無窮小比無窮小,分子分母還必須是連續可導函式。

4、用mclaurin(麥克勞琳)級數,而國內普遍誤譯為taylor(泰勒)。

2樓:宛丘山人

||∫||設du x=atant 則 dx=asec^2(t)dt原式=1/|zhia|∫dao

內sec^2(t)dt/(tantsect)=-1/|a|∫sectdt

=-1/|a| *ln(sec t + tan t) +c=-1/|a|*ln+c

3樓:匿名使用者

不定積分下1/根號下(x^2+a^2)dx

4樓:匿名使用者

|√令x=atanu,則u=arctan(x/a)∫[1/√(x²+a²)]dx

=∫[1/√(a²tan²u+a²)]d(atanu)=∫cosu·sec²udu

=∫secudu

=ln|secu+tanu| +c

=ln|√(x²+a²)/a +x/a| +c=ln|[√(x²+a²)+x]/a| +c

根號下a^2-x^2不定積分中的步驟詳解 5

5樓:匿名使用者

^^^i = ∫√(a^2-x^2)dx

= x√(a^2-x^2) - ∫[x(-x)/√(a^2-x^2)]dx

= x√(a^2-x^2) - ∫[(a^2-x^2-a^2)/√(a^2-x^2)]dx

= x√(a^2-x^2) - i + ∫[a^2/√(a^2-x^2)]dx

2i = x√(a^2-x^2) + a^2∫d(x/a)/√[1-(x/a)^2]

i = (x/2)√(a^2-x^2) + (a^2/2)arcsin(x/a) + c

6樓:匿名使用者

^^^∫sqrt(a^2+x^2)dx=xsqrt(a^2+x^2)-∫x^2dx/sqrt(a^2+x^2)

=xsqrt(a^2+x^2)-∫sqrt(a^2+x^2)dx+a^2∫dx/sqrt(a^2+x^2)

∫sqrt(a^2+x^2)dx=(1/2)[xsqrt(a^2+x^2)+a^2∫dx/sqrt(a^2+x^2)]

=(1/2)[xsqrt(a^2+x^2)+a^2ln(x+sqrt(a^2+x^2))]

7樓:路人__黎

cos²t=(1 + cos2t)/2

∫a²cos²tdt=∫(a²/2)(1 + cos2t)dt=(a²/2)∫(1 + cos2t)dt=(a²/2)[∫1 dt + ∫cos2t dt]=(a²/2)[∫1 dt + ∫(1/2)cos2t d(2t)]=(a²/2)[∫1 dt + (1/2)∫cos2t d(2t)]=(a²/2)[t + (1/2)sin2t]=(a²/2)t + (a²/4)sin2t + c

8樓:小茗姐姐

方法如下圖所示,

請認真檢視,

祝學習愉快,

學業進步!

滿意請釆納!

求1/根號下a^2-x^2 dx a>0的不定積分

9樓:我是一個麻瓜啊

∫1/√(a^2-x^2)dx (a>0)=arcsin(x/a)+c。c為積分常數。

分析過程如下:

∫1/√(a^2-x^2)dx (a>0)=∫1/dx

=∫1/√[1-(x/a)^2]d(x/a)=arcsin(x/a)+c

擴充套件資料:求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c

10樓:匿名使用者

∫1/√(a^2-x^2)dx (a>0)=∫1/dx

=∫1/√[1-(x/a)^2]d(x/a)=arcsin(x/a)+c

注:^2——表示平方。

11樓:匿名使用者

x = asinθ、dx = acosθ dθ

∫[0→a] dx/[x + √(a² - x²)]

= ∫[0→π/2] acosθ/[asinθ + acosθ] dθ

= (1/2)∫[0→π/2] 2cosθ/[sinθ + cosθ] dθ

= (1/2)∫[0→π/2] [(sinθ + cosθ) - (sinθ - cosθ)]/(sinθ + cosθ) dθ

= (1/2)∫[0→π/2] dθ - (1/2)∫[0→π/2] d(- cosθ - sinθ)/(sinθ + cosθ)

= θ/2 |[0→π/2] + (1/2)∫ d(sinθ + cosθ)/(sinθ + cosθ)

= π/4 + (1/2)ln[sinθ + cosθ] |[0→π/2]

= π/4 + (1/2)

= π/4

12樓:夏小紙追

^繞x軸:

體積為y=2-x^2繞x旋轉的體積減去y=x^2繞x軸旋轉轉的體積v=2[∫pi*(2-x^2)^2dx-∫pi*(x^2)^2dx] 積分下限為0,上限為1,積分割槽間對稱,所以用2倍0,1區間上的

=pi*8/3

繞y軸:

2條曲線的交點為(-1,1),(1,1)

v=∫pi*ydy+∫pi*(y-2)dy第一個積分上下限為0,1,第二個積分上下限為1,2=pi

13樓:匿名使用者

這不是書上公式有的嗎?

=arcsin(x/a)+c

求不定積分∫x^2/根號下(x^2+a^2) dx (a>0) 10

14樓:匿名使用者

^^^∫x^2/√(a^2+x^2)dx

=∫(x^2+a^2-a^2)/√(a^2+x^2)dx

=∫√(x^2+a^2)dx-a^2∫dx/√(a^2+x^2)

=x√(x^2+a^2)- ∫x√d(x^2+a^2)dx-a^2arsh(x/a)

= x√(x^2+a^2)- ∫x^2dx/√(x^2+a^2)-a^2(ln(x/a+√(1+(x/a)^2)),

2∫x^2dx/√(x^2+a^2)= x√(x^2+a^2)-a^2,

∴∫x^2dx/√(a^2+x^2)= x√(a^2+x^2)/2-a^2ln[x+√(a^2+x^2)]/2+c

這裡用到分部積分和反雙曲正弦函式arshx。

15樓:匿名使用者

^^∫[x^2/√(x^2+a^2)]dx

=∫dx

=a∫d(x/a)

=(1/2)a(x/a)^2-a*arctan(x/a)+c=[1/(2a)]x^2-a*arctan(x/a)+c

16樓:匿名使用者

作代換x=sht,或者x=tant,然後就會化的很簡單(注意前一種方法中(sht)^2可以化成(ch2t-1)/2)

求不定積分dx/x根號下(x^2-1)

17樓:drar_迪麗熱巴

解題過程如下圖:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式  及  的原函式存在。

2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式  的原函式存在,  非零常數。

x 2 a 2 不定積分,1 x 2 a 2 不定積分

你算錯了啊,沒有什麼負號啊,ln裡面拆成兩項ln x a ln x a 再求導會方便 正確的結果 arctanh是反雙曲正切函式 後面 c 求1 x 2 a 2 的不定積分 1 x 2 a 2 的不定積分求解過程如下 這裡先是對x a 提取a 使得它變成a 1 x a 然後就可以套用公式,然後求出最...

求根號下a2x2的不定積分

a 2 x 2 dx 設x asint 則dx dasint acostdt a 2 x 2 a 2 a 2sint 2 a 2cost 2 a 2 x 2 dx acost acostdt a 2 cost 2dt a 2 cos2t 1 2dt a 2 4 cos2t 1 d2t a 2 4 s...

a2x2的不定積分,1a2x2的不定積分

dx a 2 x 2 1 a d x a 1 x a 2 1 a arctan x a c 1 1 x 2 的不定積分有公式的。這個除個a 2就可以化成這個基本公式。求不定積分 1 a 2 x 2 dx 解答越詳細越好。令x atanz dx asec2z dz 原式 asecz asec2z dz...