1樓:匿名使用者
^^∫√(a^2-x^2)dx
設x=asint
則dx=dasint=acostdt
a^2-x^2
=a^2-a^2sint^2
=a^2cost^2
∫√(a^2-x^2)dx
=∫acost*acostdt
=a^2∫cost^2dt
=a^2∫(cos2t+1)/2dt
=a^2/4∫(cos2t+1)d2t
=a^2/4*(sin2t+2t)
將x=asint代回
∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+c
2樓:匿名使用者
i = ∫√
(a²-x²) dx 令 x = a sint, dx = a cost dt
= a² ∫ cos²t dt = a²/2 ∫ (1+ cos2t) dt
= a²/2 (t + (1/2) sin2t ) + c
= a²/2 arcsin(x/a) + (1/2) x √a²-x²) + c
注: (1/2) sin2t = sint cost = (x/a) * √(a²-x²) / a
根號下a^2+x^2的不定積分怎麼求
3樓:匿名使用者
^^解:∫√(a^2-x^2)dx
設x=asint
則dx=dasint=acostdt
a^2-x^2
=a^2-a^2sint^2
=a^2cost^2
∫√(a^2-x^2)dx
=∫acost*acostdt
=a^2∫cost^2dt
=a^2∫(cos2t+1)/2dt
=a^2/4∫(cos2t+1)d2t
=a^2/4*(sin2t+2t)
將x=asint代回
∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+c
擴充套件資料:積分公式
注:以下的c都是指任意積分常數。
全體原函式之間只差任意常數c
4樓:牽奕聲梅妍
^^^∫x^2/√(a^2+x^2)dx
=∫(x^2+a^2-a^2)/√(a^2+x^2)dx=∫√(x^2+a^2)dx-a^2∫dx/√(a^2+x^2)=x√(x^2+a^2)-
∫x√d(x^2+a^2)dx-a^2arsh(x/a)=x√(x^2+a^2)-
∫x^2dx/√(x^2+a^2)-a^2(ln(x/a+√(1+(x/a)^2)),
2∫x^2dx/√(x^2+a^2)=
x√(x^2+a^2)-a^2,
∴∫x^2dx/√(a^2+x^2)=
x√(a^2+x^2)/2-a^2ln[x+√(a^2+x^2)]/2+c
這裡用到分部積分和反雙曲正弦函式arshx。
5樓:享受孤獨
有分部積分做的確比較簡單
6樓:來安大記得q我
用分部積分法,
i=∫√x^2+a^2dx=x√x^2+a^2-∫x·x/√x^2+a^2dx
7樓:匿名使用者
答案錯了吧 ln前應該是a^2/2吧?
根號下a^2–x^2的不定積分怎麼求?
8樓:匿名使用者
求這個不定積分的困難在於有根式,但我們可以利用三角公式來化去根式。求解過程如下圖所示:
求1/根號下a^2-x^2 dx a>0的不定積分
9樓:我是一個麻瓜啊
∫1/√(a^2-x^2)dx (a>0)=arcsin(x/a)+c。c為積分常數。
分析過程如下:
∫1/√(a^2-x^2)dx (a>0)=∫1/dx
=∫1/√[1-(x/a)^2]d(x/a)=arcsin(x/a)+c
擴充套件資料:求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c
10樓:匿名使用者
∫1/√(a^2-x^2)dx (a>0)=∫1/dx
=∫1/√[1-(x/a)^2]d(x/a)=arcsin(x/a)+c
注:^2——表示平方。
11樓:匿名使用者
x = asinθ、dx = acosθ dθ
∫[0→a] dx/[x + √(a² - x²)]
= ∫[0→π/2] acosθ/[asinθ + acosθ] dθ
= (1/2)∫[0→π/2] 2cosθ/[sinθ + cosθ] dθ
= (1/2)∫[0→π/2] [(sinθ + cosθ) - (sinθ - cosθ)]/(sinθ + cosθ) dθ
= (1/2)∫[0→π/2] dθ - (1/2)∫[0→π/2] d(- cosθ - sinθ)/(sinθ + cosθ)
= θ/2 |[0→π/2] + (1/2)∫ d(sinθ + cosθ)/(sinθ + cosθ)
= π/4 + (1/2)ln[sinθ + cosθ] |[0→π/2]
= π/4 + (1/2)
= π/4
12樓:夏小紙追
^繞x軸:
體積為y=2-x^2繞x旋轉的體積減去y=x^2繞x軸旋轉轉的體積v=2[∫pi*(2-x^2)^2dx-∫pi*(x^2)^2dx] 積分下限為0,上限為1,積分割槽間對稱,所以用2倍0,1區間上的
=pi*8/3
繞y軸:
2條曲線的交點為(-1,1),(1,1)
v=∫pi*ydy+∫pi*(y-2)dy第一個積分上下限為0,1,第二個積分上下限為1,2=pi
13樓:匿名使用者
這不是書上公式有的嗎?
=arcsin(x/a)+c
根號下a^2-x^2不定積分中的步驟詳解 5
14樓:匿名使用者
^^^i = ∫√(a^2-x^2)dx
= x√(a^2-x^2) - ∫[x(-x)/√(a^2-x^2)]dx
= x√(a^2-x^2) - ∫[(a^2-x^2-a^2)/√(a^2-x^2)]dx
= x√(a^2-x^2) - i + ∫[a^2/√(a^2-x^2)]dx
2i = x√(a^2-x^2) + a^2∫d(x/a)/√[1-(x/a)^2]
i = (x/2)√(a^2-x^2) + (a^2/2)arcsin(x/a) + c
15樓:匿名使用者
^^^∫sqrt(a^2+x^2)dx=xsqrt(a^2+x^2)-∫x^2dx/sqrt(a^2+x^2)
=xsqrt(a^2+x^2)-∫sqrt(a^2+x^2)dx+a^2∫dx/sqrt(a^2+x^2)
∫sqrt(a^2+x^2)dx=(1/2)[xsqrt(a^2+x^2)+a^2∫dx/sqrt(a^2+x^2)]
=(1/2)[xsqrt(a^2+x^2)+a^2ln(x+sqrt(a^2+x^2))]
16樓:路人__黎
cos²t=(1 + cos2t)/2
∫a²cos²tdt=∫(a²/2)(1 + cos2t)dt=(a²/2)∫(1 + cos2t)dt=(a²/2)[∫1 dt + ∫cos2t dt]=(a²/2)[∫1 dt + ∫(1/2)cos2t d(2t)]=(a²/2)[∫1 dt + (1/2)∫cos2t d(2t)]=(a²/2)[t + (1/2)sin2t]=(a²/2)t + (a²/4)sin2t + c
17樓:小茗姐姐
方法如下圖所示,
請認真檢視,
祝學習愉快,
學業進步!
滿意請釆納!
如何求根號下a+x^2的不定積分,a是常數
18樓:匿名使用者
^^常數係數為a
變式為:
∫√(x^2+a^2)dx
=x√(x^2+a^2)-∫xd√(x^2+a^2)
=x√(x^2+a^2)-∫x^2/√(x^2+a^2)dx
=x√(x^2+a^2)-∫(x^2+a^2-a^2)/√(x^2+a^2)dx
=x√(x^2+a^2)-∫[√(x^2+a^2)-a^2/√(x^2+a^2)]dx
移項後為:
2∫√(x^2+a^2)dx=x√(x^2+a^2)+a^2∫1/√(x^2+a^2)dx
=x√(x^2+a^2)+a^2ln|x+√(x^2+a^2)|+2c
所以:原式=1/2 x√(x^2+a^2)+1/2 a^2ln|x+√(x^2+a^2)|+c
19樓:7zone射手
^^^∫√(x^2+a^2)dx
=x√(x^2+a^2)-∫xd√(x^2+a^2)
=x√(x^2+a^2)-∫x^2/√(x^2+a^2)dx
=x√(x^2+a^2)-∫(x^2+a^2-a^2)/√(x^2+a^2)dx
=x√(x^2+a^2)-∫[√(x^2+a^2)-a^2/√(x^2+a^2)]dx
移項,得
2∫√(x^2+a^2)dx=x√(x^2+a^2)+a^2∫1/√(x^2+a^2)dx
=x√(x^2+a^2)+a^2ln|x+√(x^2+a^2)|+2c
所以原式=1/2 x√(x^2+a^2)+1/2 a^2ln|x+√(x^2+a^2)|+c
20樓:匿名使用者
三角換元法x=√a*tanα
不定積分 根號下的(a^2-x^2)/x^4 用第二換元法做,求步驟詳細清晰
21樓:匿名使用者
新年好!可以用變數代換法如圖計算。經濟數學團隊幫你解答,請及時採納。謝謝!
1/(x^2*根號下(a^2+x^2))的不定積分怎樣求?
22樓:你愛我媽呀
^∫1/[x√(a^2-x^2)]dx
= (1/a^2)∫ [ √(a^2-x^2)/ x + x/√(a^2-x^2) ] dx
=(1/a^2)[ ∫ √(a^2-x^2)/ x dx - ∫ d√(a^2-x^2) ]
= (1/a^2) ∫ √(a^2-x^2)/ x dx - √(a^2-x^2)/(a^2)
令a/x = secb,則(-a/x^2) dx = (tanb)^2db,(-a/(a/secb)^2) dx = (tanb)^2db,dx = -a (sinb)^2 db ,所以:
∫ √(a^2-x^2)/ x dx
= ∫ tanb[ -a (sinb)^2 ] db
= -a∫ (sinb)^3/cosb db
= a ∫ (1-(cosb)^2)/cosb dcosb
= a [ln|cosb| - (cosb)^2/2 ] + c'
= a[ln|x/a| - (1/2)(x/a)^2] + c'
代入可以得到:
∫1/[x√(a^2-x^2)]dx
= (1/a^2) ∫ √(a^2-x^2)/ x dx - √(a^2-x^2)/(2a^2)
= (1/a)[ln|x/a| - (1/2)(x/a)^2 ] -√(a^2-x^2)/(a^2) + c
a2x2的不定積分,1a2x2的不定積分
dx a 2 x 2 1 a d x a 1 x a 2 1 a arctan x a c 1 1 x 2 的不定積分有公式的。這個除個a 2就可以化成這個基本公式。求不定積分 1 a 2 x 2 dx 解答越詳細越好。令x atanz dx asec2z dz 原式 asecz asec2z dz...
不定積分dx x根號下(x 2 a 2)
抄設x atant 則 dx asec 襲2 t dt 原式 1 baia sec 2 t dt tantsect 1 a sectdt 1 a ln sec t tan t c 1 a ln c 某一個函式中的某 zhi一個變數,此變數在dao變大 或者變小 的永遠變化的過程中,逐漸向某一個確定的...
x 2 a 2 不定積分,1 x 2 a 2 不定積分
你算錯了啊,沒有什麼負號啊,ln裡面拆成兩項ln x a ln x a 再求導會方便 正確的結果 arctanh是反雙曲正切函式 後面 c 求1 x 2 a 2 的不定積分 1 x 2 a 2 的不定積分求解過程如下 這裡先是對x a 提取a 使得它變成a 1 x a 然後就可以套用公式,然後求出最...