1樓:匿名使用者
摺疊後的面積是原來的三分之二,說明重疊部分的面積是1-2/3=1/3
重疊部分是兩層,所以陰影的面積是1-1/3×2=1/3
原三角形的面積是4÷1/3=12
2樓:
解:設重複部分面積x。
(1+x):(1+2x)=2:3
2+4x=3+3xx=1
如圖所示,將一個三角形紙片沿虛線摺疊得到的圖形面積是原來的三分之二,已知塗色部分的面積是4平方釐米
3樓:怪盜柳光
因為摺疊後面積為三分之二
所以原面積4*3=12
所以原來的三角形面積為12
如圖所示,將一個三角形紙片沿虛線摺疊後得到的圖形面積是原三角形面積的三分之二,已知陰影部分的面積是
4樓:倪白
架設摺疊前的面積為s 摺疊後 就是 2/3s 而消失的 1/3s 的面積在那裡呢 就是途中 摺疊後 非陰影部分的面積 又因
為摺疊部分的面積為 4平方釐米 所以 2倍的 非陰影的面積+4平方釐米=s 的
而 非陰影的面積 又= 2/3s-4 所以推出2x非陰影的面積+4=s 可轉化為 4/3s-8+4=s1/3s=4
s=12 平方釐米
將如圖所示的三角形沿虛線摺疊,得到如圖所示的多邊形,這個多邊形的面積是原三角形面積的57,已知圖中陰
5樓:百度使用者
6÷[1-2(1-57)]
=6÷[1-2×27]
=6÷[1-47]
=6÷3
7=14(平方釐米)
答:求原來三角形的面積是14平方釐米.
將圖中三角形形紙片按照虛線方向折,原三角形面積是這個圖形面積的1.5倍.已知圖中三個陰影三角形面積之
6樓:小駫
摺疊後圖形的面積=s+s陰影
,摺疊前的三角形的面積=2s+s陰影,
∵原三角形面積是摺疊後圖形面積的1.5倍,∴2s+s陰影=1.5(s+s陰影),
∴s=1,
∴s△=2s+s陰影=2+1=3.
故答案是3.
將圖1中的三角形紙片沿虛線摺疊得到圖2,其中的粗實線圖形面積與原三角形面積之比為2:口.已知圖2中口個
7樓:天災
設重疊部分的面積為x,
則三角形a圖c的面積為:q×x+v=qx+v,粗邊圍成的面積為:x+v,
因為粗實線圖形面積與原三角形面積之比為q:0,所以:(x+v):(qx+v)=q:0,
&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp; 4x+q=0x+0,
&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;4x-0x=0-q,
&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp;&n圖sp; x=v;
所以重疊部分的面積為v.
將一個三角形紙片沿虛線摺疊後得到的圖形面積是原三角形面積的2/3,已知陰影部分的面積是4平方釐米,原三
8樓:匿名使用者
設摺疊後減少部分的面積x(即重疊部分的一半),原三角形面積sx=s(1-2/3)=1/3s
s=4+2x=4+2*(1/3s)
s=4*3=12平方釐米
9樓:杭蓉
有圖麼?
、、/、////////
將一個三角形紙片沿虛線摺疊後得到的圖形是原三角形面積的2/3,已知陰影部分的面積是4平方釐米,則原三角
10樓:匿名使用者
解:設重疊部分的面積為x平方釐米,
則原三角形面積為(4+2x)平方釐米,摺疊後的圖形面積為(4+x)平方釐米.
(4+2x):(4+x)=3:2,
解得x=4.
原三角形面積:4+2×4=12平方釐米
將圖1所示的三角形紙片沿粗虛線摺疊成圖2所示的圖形。已知圖1是圖2的1 5倍,圖2陰影為1平方釐米,重疊部分
設 三角形面積為 x,重疊部分面積為 a,則 x 1 2a x 1 a 1.5 解得 a 1。重疊部分面積為2a 2.解 設三角形面積為 x,重疊部分面積為 a,則 x 1 2a x 1 a 1.5 解得 a 1 2a 2 1.5 1 2 1 平方釐米 圖1同圖2的區別 圖2少圖1的中間部分 即重疊...
圖一是三角形,沿虛線摺疊後得到圖二,這個多邊形的面積是原
由圖可知 原三角形面積 重疊部分面積 2 陰影面積 折後減少的面積其實就是少了重疊部分,所以重疊部分面積 2 9原三角形。可計算 陰影面積 5 9原三角形,原三角形 15 5 9 27 圖1是一個三角形,沿虛線摺疊後得到圖2,這個多邊形的面積是原三角形面積的 7 9 已知圖2中 設原三角形面積為x平...
如圖,把三角形ABC紙片沿DE摺疊,當點A落在四邊形BCDE
應該是相等吧,4年沒做過這種題目,都不會做了,剛才想了半天,都沒想出來,接著想,實在想不出就算了 如圖,把 abc紙片沿de摺疊,當點a落在四邊形bcde內部時,則 a與 1 2之間有一種數量關係始終保持不變 a 在 ade中 dua ade aed 180 zhi a 180 ade aed,由摺...