雙曲線漸近線是什麼雙曲線的漸近線公式是什麼?

2021-03-04 08:00:11 字數 4636 閱讀 4730

1樓:傷唯鎂

漸近線定義為如果曲線上的一點沿著趨於無窮遠時,該點與某條直線的距離趨於零,則稱此條直線為曲線的漸近線。

雙曲線漸近線方程,是一種幾何圖形的演算法,這種主要解決實際中建築物在建築的時候的一些資料的處理。

基本公式:y=±(b/a)x(當焦點在x軸上),y=±(a/b)x (焦點在y軸上)

雙曲線漸近線注意事項

1.與雙曲線 - =1共漸近線的雙曲線系方程可表示為 - =λ(λ≠0且λ為待定常數)

2.與橢圓x^2/a^2+y^2/b^2 =1(a>b>0)共焦點的曲線系方程可表示為x^2/(a^2-λ) -y^2/(λ-b^2) =1(λ0時為橢圓, b2<λ2.雙曲線的第二定義

平面內到定點f(c,0)的距離和到定直線l:x=+(-)a2/c 的距離之比等於常數e=c/a (c>a>0)的點的軌跡是雙曲線,定點是雙曲線的焦點,定直線是雙曲線的準線,焦準距(焦引數)p= ,與橢圓相同.

3.焦半徑( - =1,f1(-c,0)、f2(c,0)),點p(x0,y0)在雙曲線 - =1的右支上時,|pf1|=ex0+a,|pf2|=ex0-a;

p在左支上時,則 |pf1|=ex1+a |pf2|=ex1-a.

2樓:唐衛公

x²/a² - y²/b² = 1的漸近線為y = ±bx/a為了容易記,將雙曲線右邊的1改為0即可很容易推出:

x²/a² - y²/b² = 0

y²/b² = x²/a²

y² = b²x²/a²

y = ±bx/a

3樓:啦啦啦咯哦

y=±(b/a)x(當焦點在

x軸上),y=±(a/b)x (焦點在y軸上)。

漸近線定義為如果曲線上的一點沿著趨於無窮遠時,該點與某條直線的距離趨於零,則稱此條直線為曲線的漸近線。雙曲線漸近線方程,是一種幾何圖形的演算法,這種主要解決實際中建築物在建築的時候的一些資料的處理。

雙曲線的漸近線公式是什麼?

4樓:u愛浪的浪子

雙曲線漸近線方程公式:

方程:y=±(b/a)x(當焦點在x軸上),y=±(a/b)x (焦點在y軸上)或令雙曲線標準方程 x^2/a^2-y^2/b^2 =1中的1為零即得漸近線方程。

5樓:縱橫豎屏

y=±(b/a)x(當焦點在x軸上),y=±(a/b)x (焦點在y軸上)(a:雙曲線的實半軸,b是虛半軸長)

幾何性質

(1)範圍:|x|≥a,y∈r.

(2)對稱性:雙曲線的對稱性與橢圓完全相同,關於x軸、y軸及原點中心對稱.

(3)頂點:兩個頂點a1(-a,0),a2(a,0),兩頂點間的線段為實軸,長為2a,虛軸長為2b,且c2=a2+b2.與橢圓不同.

(4)漸近線:雙曲線特有的性質,方程y=±(b/a)x(當焦點在x軸上),y=±(a/b)x (焦點在y軸上)或令雙曲線

6樓:星愛自由

方程:y=±(b/a)x(當焦點在x軸上),y=±(a/b)x (焦點在y軸上)

或令雙曲線標準方程 x²/a²-y²/b² =1中的1為零即得漸近線方程.

7樓:匿名使用者

^雙曲線 x^2/a^2-y^2/b^2 =1推導:方程兩邊同時除以x^2得:

1/a^2 - y^2/(b^2*x^2) = 1/x^2兩邊同時乘以b^2並移項:

y^2/x^2 = b^2/a^2 - b^2/x^2當x,y都遠離座標原點時, b^2/x^2趨向於0,則(y/x)^2趨向於(b/a)^2

漸近線斜率就是b/a或-b/a

8樓:匿名使用者

你將等於號後面的數直接寫成0,然後再求出y和x的等式就是了,有+ . - 2條比如y*2\a*2+x*2\b*2=50直接把50變成0y*2\a*2-x*2\b*2=0

9樓:匿名使用者

y=正負bx/a 焦點在x軸

10樓:闢兒鈄衍

將雙曲線標準方程中的1換成0,再一簡化,就可以得到雙曲線漸近線公式。不需要死記硬背的。

雙曲線的漸近線是什麼?

11樓:皮皮鬼

解雙曲線的方程形式是

x^2/a^2-y^2/b^2=t(t≠0)令t=0

得x^2/a^2-y^2/b^2=0

解得雙曲線的漸近線方程為y=±bx/a

12樓:匿名使用者

雙曲線的漸近線是兩條一直靠近但是不會和雙曲線相交的線,兩條線對稱。

13樓:郭思天藏州

漸近線定義為如果曲線上的一點沿著趨於無窮遠時,該點與某條直線的距離趨於零,則稱此條直線為曲線的漸近線。雙曲線漸近線方程,是一種幾何圖形的演算法,這種主要解決實際中建築物在建築的時候的一些資料的處理。

雙曲線漸近線方程,是一種幾何圖形的演算法,這種主要解決實際中建築物在建築的時候的一些資料的處理。雙曲線的主要特點:無限接近,但不可以相交。

分為鉛直漸近線、水平漸近線和斜漸近線。是一種根據實際的生活需求研究出的一種演算法。

y=±(b/a)x(當焦點在x軸上),y=±(a/b)x

(焦點在y軸上)

(1)範圍:|x|≥a,y∈r.

(2)對稱性:雙曲線的對稱性與橢圓完全相同,關於x軸、y軸及原點中心對稱.

(3)頂點:兩個頂點a1(-a,0),a2(a,0),兩頂點間的線段為實軸,長為2a,虛軸長為2b,且c2=a2+b2.與橢圓不同.

(4)漸近線:雙曲線特有的性質,方程y=±(b/a)x(當焦點在x軸上),y=±(a/b)x

(焦點在y軸上)或令雙曲線

x^2/a^2-y^2/b^2

=1中的1為零即得漸近線方程.

(5)離心率e>1,隨著e的增大,雙曲線張口逐漸變得開闊.

(6)等軸雙曲線(等邊雙曲線):x^2-y^2=c其中c≠0,它的離心率e=c/a=√2

(7)共軛雙曲線:方程

x^2/a^2-y^2/b^2=1與x^2/a^2-y^2/b^2=-1

表示的雙曲線共軛,有共同的漸近線和相等的焦距,但需注重方程的表達形式.

擴充套件資料:

無限接近,但不可以相交。分為垂直漸近線、水平漸近線和斜漸近線。

當曲線上一點m沿曲線無限遠離原點時,如果m到一條直線的距離無限趨近於零,那麼這條直線稱為這條曲線的漸近線。

需要注意的是:並不是所有的曲線都有漸近線,漸近線反映了某些曲線在無限延伸時的變化情況。

根據漸近線的位置,可將漸近線分為三類:水平漸近線、垂直漸近線、斜漸近線。

y=k/x(k≠0)是反比例函式,其圖象關於原點對稱,x=0,y=0為其漸近線方程

當焦點在x軸上時

雙曲線漸近線的方程是y=[+(-)b/a]x

當焦點在y軸上時

雙曲線漸近線的方程是y=[+(-)a/b]x

注意:1.

與雙曲線

-=1共漸近線的雙曲線系方程可表示為

-=λ(λ≠0且λ為待定常數);與橢圓

=1(a>b>0)共焦點的曲線系方程可表示為

-=1(λ0時為橢圓,

b2<λa>0)的點的軌跡是雙曲線,定點是雙曲線的焦點,定直線是雙曲線的準線,焦準距(焦引數)p=

a2/c,與橢圓相同.

3.焦半徑(

-=1,f1(-c,0)、f2(c,0)),點p(x0,y0)在雙曲線

-=1的右支上時,|pf1|=ex0+a,|pf2|=ex0-a;

p在左支上時,則

|pf1|=ex1+a |pf2|=ex1-a.

參考資料:搜狗百科-雙曲線漸近線

14樓:赫幻巧傅尋

雙曲線x^2/2-y^2=1的漸近線為

x^2/2-y^2=0,即x=±√2y

設雙曲線方程為x^2/2-y^2=m

把a(2,-2)帶入,得

m=-2

即曲線方程為y^2/2-x^2/4=1

雙曲線的漸近線有什麼意義

15樓:中國展翅翱翔

沒什麼意義,就是有些題會涉及到:比如叫你求漸近線;或者漸近線已知,根據一些其它量來求雙曲線方程,只要會做就可以了。

祝你考試順利,不要有壓力哦!

16樓:子魚雨嫣

當曲線上一點m沿曲線無限遠離原點時,如果m到一條直線的距離無限趨近於零,那麼這條直線稱為這條曲線的漸近線

若極限存在,且極限也存在,那麼曲線具有漸近線y = ax + 1。

漸近線特點:無限接近,永不相交

17樓:匿名使用者

漸近線能限定雙曲線的彎曲程度

其實每一對漸近線就能定出唯一的雙曲線

在考試中,比較難的題目一般漸近線多比較重要,建議多作點難題,體會一下。

18樓:流離失所的家

做理論或統計才有意義,現在不用想

雙曲線的漸近線方程是什麼?

19樓:匿名使用者

當焦點在x軸上時,漸近線方程為:y=+或-b/a

當焦點在y軸上時,漸近線方程為:y=+或-a/b

20樓:狼塗

書上有,別懶,翻一翻,有好處的

雙曲線的漸近線方程,雙曲線的漸近線公式是什麼?

雙曲線漸近線bai 方程,是一種幾何圖形 du的演算法,zhi這種主要解決實際中建築物在dao建築版的時候的一些資料的權處理。雙曲線的主要特點 無限接近,但不可以相交。分為鉛直漸近線 水平漸近線和斜漸近線。是一種根據實際的生活需求研究出的一種演算法。對於x 2 a 2 y 2 b 2 1 漸進線為y...

知道雙曲線焦點與漸近線,如何求雙曲線方程

焦點在y軸上,漸近線方程y ax b c 3a b 根號2 2 a 2 b 2 c 2 解以上三個方程 得a 2 3,b 2 2a 2 6,c 2 9雙曲線方程 y 2 3 x 2 6 1 高中數學雙曲線 已知漸近線怎麼求雙曲線方程 與雙曲線x2 a2 y2 b2 1漸近線相同的雙曲線方程可以設為 ...

已知雙曲線的漸近線方程,如何求雙曲線的標準方程

雙曲線方bai程為 3x 4y ax by 1 過 2,1 6 4 2a b 1 滿足du zhi此條件的雙曲dao方程都是。如果限制沒版有線權xy項 那麼還要滿足 4a 3b 0 4a 2b 1 那麼解得 b 1 5 a 3 20 如雙曲線為 x 抄2 a 2 y 2 b bai2 k k為常量,...