求教第55題,為什麼其中sinx和sin2x要用泰勒公式展開到x的5次方那一項呢

2021-04-17 18:09:10 字數 4708 閱讀 3317

1樓:匿名使用者

這沒有必然的確定要到哪一項

這是在計算的過程中進行嘗試

而對於次方多項式

只要有最低的次方數即可

即其無窮小就是最低次方數

如果還不放心

就再往後一兩項吧

為什麼用「泰勒公式」sinx變成了這個?

2樓:等你的我

泰勒公式中的o()是多少是根據

到第幾項決定的。

比如用公式,sinx到x:sinx=x+o(x)。

到x^2:sinx=x+o(x^2)(注意到x^2係數為0)。

求具體無窮小階數根據定義:

f(x)/x^a有極限時a的值在具體計算時可以多幾項,比如2sinx-sin2x:

2sinx-sin2x=2(x+o(x))-(2x+o(x))=o(x)的話無法確定。

但是2sinx-sin2x=2[x-1/6x^3+o(x^3)]-[2x-1/6*(2x)^3+o(x^3)]=x^3+o(x^3)就可以出來了。。

3樓:丿窮奇灬

數學中, 泰勒公式是一個用 函式在某點的資訊描述其附近取值的公式。如果函式足夠 平滑的話,在已知函式在某一點的各階 導數值的情況之下,泰勒公式可以用這些導數值做係數構建一個多項式來近似函式在這一點的鄰域中的值。泰勒公式還給出了這個多項式和實際的函式值之間的偏差。

泰勒公式得名於英國數學家布魯克· 泰勒。他在2023年的一封信裡首次敘述了這個公式,儘管2023年詹姆斯·格雷高裡已經發現了它的特例。

拉格朗日在2023年之前,最先提出了帶有餘項的現在形式的 泰勒定理。

考研張宇高等數學 關於高階導數求導看不懂 為什麼第二部把sinx用泰勒公式至第三項,可是題目求

4樓:匿名使用者

因為前面有個因子是x^3啊,sinx的泰勒中五次及以上的項(還有一次項)乘以x^3,求6階導後在x=0處取值都是0了;只有三次項能帶來非零的值。

5樓:張小笨

因為那個式就是sinx的式,這樣其實就相當於化簡了

關於泰勒公式的問題?

6樓:匿名使用者

泰勒公式對x>x0和x

至於為什麼可以用別的符號代替,因為這裡不是一直求和到無限的泰勒公式,因此有多種「餘量」公式,這是其中一種而已。你搜尋泰勒公式詞條應該能看到這樣的公式

7樓:痔尉毀僭

第一個問題bai:因為題目指定的階du數為三階zhi,所以至少要計算到daox^3即可,也就是說專sinx

屬到x^3,對於(sinx)^2,sinx只需到x即可,因為一平方就出現了4次方,就可滿足題意,最終結果把高於3階的無窮小捨去即可。

第二個問題:lnx的公式是沒有的,只有ln(1+x)有公式,所以ln(cosx)一定要化成ln(1-2sin2x/2)這種形式,才能套用ln(1+x)的公式。

第三個問題:e^x的佩亞諾餘項是o(x^n+1)沒說到n階,實際上到n+1階,e^-x要求到n階,所以o(x^n)是對的,佩亞諾餘項只是對無窮小階數的估計,題目中要求到n階,只要出現o(x^n)就對了。

請教泰勒公式cosx和sinx

8樓:匿名使用者

前一項加1就是幾次方

含有0項的則加2

在麥克勞林級數

sinx其偶數項為0則無窮小則為偶數次

cosx其奇數項為0則無窮小則為奇數次

9樓:匿名使用者

泰勒公式中的o()是多少是根據展開到第幾項決定的;

比如用公式,sinx到x:sinx=x+o(x);

到x^2:sinx=x+o(x^2)(注意到x^2係數為0)。

求具體無窮小階數根據定義:f(x)/x^a有極限時a的值;

在具體計算時可以多幾項,比如2sinx-sin2x:

2sinx-sin2x=2(x+o(x))-(2x+o(x))=o(x)的話無法確定,但是

2sinx-sin2x=2[x-1/6x^3+o(x^3)]-[2x-1/6*(2x)^3+o(x^3)]=x^3+o(x^3)就可以算出來了。

10樓:匿名使用者

這個需要看你要用到第幾次方,其他就可以直接寫o(xn)  ;如只用到二次方後面直接寫+o(x²) ,,用到三次方後面寫+o(x³),所以你看到每個寫的都不一樣。

11樓:匿名使用者

sinx=x-x^3/3!+x^5/5!+o(x^5),o(x^5)換成o(x^6)也可以。一般的寫法是寫成前面泰勒多項式最後一項的

高階無窮小,對sinx來說,一般寫成o(x^5)就行了。逐項求導後就是cosx的泰勒公式 到考研網**檢視回答詳情》

12樓:匿名使用者

n次方是你可以自己定的,n的值取得越大表示這個式會越逼近於cosx的真實值。只是這個意思。o()裡面的,不用在意。不重要。

13樓:匿名使用者

o(x^n)表示是函式x^n的高階無窮小

14樓:小兔乖乖乖乖了

一般算到三次方,cos算到四次方

sinx泰勒

15樓:薩覓桓心思

我是這樣理解的

書上設的是2m.說明最終的式有偶數項,也就是說,餘項一定為奇數階,注意,一定是啊~~~~

對於m=1時

f(x)=f'(0)+f'(0)x+f''(0)x+r2(x),四項對於這個題目

樓主把植代入

sinx=0+x+0*x^2/2!+r2(x)可能是因為其1階也是sinx=0+x+r1(x)所以,樓主在看到sinx=x時後當成下面的了吧.其實,書上求的是2階的哦~~~~

由於所求近似為2階.所以餘項r2(x)為3階的所以,最後r<=x^3/6

講的很清楚了吧?不明白再問我好了~

至於x>3的時候,我覺得你把誤差放小似乎有所不妥當因為sinx=x產生的誤差是x的高階無窮小而sinx=x+0產生的誤差是x^2的高階無窮小後者精度較高...

補充你說的對

16樓:如之人兮

根據導數表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f⑷(x)=sinx……

於是得出了週期規律。分別算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f⑷=0……

最後可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(這裡就寫成無窮級數的形式了。)

拓展資料:

在數學中,泰勒公式是一個用函式在某點的資訊描述其附近取值的公式。如果函式足夠光滑的話,在已知函式在某一點的各階導數值的情況之下,泰勒公式可以用這些導數值做係數構建一個多項式來近似函式在這一點的鄰域中的值。泰勒公式還給出了這個多項式和實際的函式值之間的偏差。

泰勒公式(taylor's formula)

f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理(帶拉格郎日餘項的泰勒公式):若函式f(x)在含有x的開區間(a,b)有直到n+1階的導數,則當函式在此區間內時,可以為一個關於(x-x0)多項式和一個餘項的和:

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!

*(x-x0)^n+rn(x)

其中rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),這裡ξ在x和x0之間,該餘項稱為拉格朗日型的餘項。

(注:f(n)(x0)是f(x0)的n階導數,不是f(n)與x0的相乘。)

使用taylor公式的條件是:f(x)n階可導。其中o((x-x0)^n)表示比無窮小(x-x0)^n更高階的無窮小。

taylor公式最典型的應用就是求任意函式的近似值。taylor公式還可以求等價無窮小,證明不等式,求極限等

17樓:西域牛仔王

sin(x) ~ x - x^3/6

18樓:打倒素貓

麥克勞林公式是泰勒公式的一種特殊形式。擴充套件資料:麥克勞林公式是泰勒公式(在 ,記ξ )的一種特殊形式。

在不需要餘項的精確表示式時,n階泰勒公式也可寫成由此得近似公式 誤差估計式變為 在麥克勞林公式中,誤差|r??(x)|是當x→0時比x?高階的無窮小。

若函式f(x)在開區間(a,b)有直到n+1階的導數,則當函式在此區間內時,可以為一個關於x多項式和一個餘項的和:tauc公式:

急求!用泰勒公式求極限時,如何判斷加到o(x)的幾次方啊?就像這個題為什麼只一項就行了

19樓:科技數碼答疑

因為分母是關於t的函式,一次只需要到t就可以了,不需要t^2

sinx泰勒式的拉格朗日餘項

20樓:匿名使用者

不是5次方, sin的4階導數在0處的取值為0, 但你用個拉格朗日餘項時, 導數符號裡面的那個部分內是位於0和x之間的某個容數, 它的值不是0,你沒法捨去這一項的. 而寫式子的時候,用到的都是在0處的各階導數值,因此才會出現偶數項消失的狀況.

高等數學極限題,為什麼不能寫成sinx趨向於0呢?求原因

因為兩個條件不是等價的,當x 0的時候,sinx 0 但是當x 0的時候,x不一定 0,x可以 2 3 k k是整數 這些值。所以sinx 0是x 0的必要但不充分的條件。所以不能把x 0改為sinx 0 為什麼?不是這樣想的。當x 0時,本身就是 sinx 0那為什麼不 不是不能,是能 寫成 si...

英語。第八題,為什麼選d英語第八題為啥選c第九題為啥選d

attend,join,participate,take part in 這些動詞或片語均含 參加,加入 之意。attend側重參加或出席會議或學術活動等。apec是很嚴肅的正式的會議,所以用d join普通用詞,指加入黨派 團體或遊戲活動等。participate正式用詞,特指參加團體活動,暗示以...

高數問題,如圖,第8題為什麼選D

分析 1 x sin1 x 當x是x 1 2k x 1 2k 1 2 時,其結果 一個為確定的0,一個為無窮大的值,也就是說 這個函式xsinx隨著x增大,不是增大的,而是在0和無窮大之間振盪變化的。解答 如果x 1 2k 當k趨於 時,x 0,原變數 2k sin2k 0 即趨於0 如果x 1 2...