matlab怎麼做頻譜對數轉化

2021-04-19 21:54:56 字數 5248 閱讀 1068

1樓:匿名使用者

可以用copyloglog函式。

頻譜,即頻bai率域訊號對頻率

的函式曲du線圖。

頻譜對數轉化就是zhi要把頻譜的座標都對dao數化,而loglog函式功能就是log-log scale plot,即座標對數化以後畫圖。

設頻譜資料為 t ,頻率為 f

則使用命令

loglog(f,t) 即可畫出對數化的頻譜。

2樓:丟了幸福啊

fft_data=fft(data);

log_ampl=log(abs(fft_data));

matlab中進行fft譜分析,如何將頻譜圖的橫座標轉換成頻率?

3樓:楊好巨蟹座

一.呼叫方法

x=fft(x);

x=fft(x,n);

x=ifft(x);

x=ifft(x,n)

用matlab進行譜分析時注意:

(1)函式fft返回值的資料結構具有對稱性。

例:n=8;

n=0:n-1;

xn=[4 3 2 6 7 8 9 0];

xk=fft(xn)

→xk =

39.0000 -10.7782 + 6.

2929i 0 - 5.0000i 4.7782 - 7.

7071i 5.0000 4.7782 + 7.

7071i 0 + 5.0000i -10.7782 - 6.

2929i

xk與xn的維數相同,共有8個元素。xk的第一個數對應於直流分量,即頻率值為0。

(2)做fft分析時,幅值大小與fft選擇的點數有關,但不影響分析結果。在ifft時已經做了處理。要得到真實的振幅值的大小,只要將得到的變換後結果乘以2除以n即可。

二.fft應用舉例

例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。取樣頻率fs=100hz,分別繪製n=128、1024點幅頻圖。

clf;

fs=100;n=128; %取樣頻率和資料點數

n=0:n-1;t=n/fs; %時間序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %訊號

y=fft(x,n); %對訊號進行快速fourier變換

mag=abs(y); %求得fourier變換後的振幅

f=n*fs/n; %頻率序列

subplot(2,2,1),plot(f,mag); %繪出隨頻率變化的振幅

xlabel('頻率/hz');

ylabel('振幅');title('n=128');grid on;

subplot(2,2,2),plot(f(1:n/2),mag(1:n/2)); %繪出nyquist頻率之前隨頻率變化的振幅

xlabel('頻率/hz');

ylabel('振幅');title('n=128');grid on;

%對訊號取樣資料為1024點的處理

fs=100;n=1024;n=0:n-1;t=n/fs;

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %訊號

y=fft(x,n); %對訊號進行快速fourier變換

mag=abs(y); %求取fourier變換的振幅

f=n*fs/n;

subplot(2,2,3),plot(f,mag); %繪出隨頻率變化的振幅

xlabel('頻率/hz');

ylabel('振幅');title('n=1024');grid on;

subplot(2,2,4)

plot(f(1:n/2),mag(1:n/2)); %繪出nyquist頻率之前隨頻率變化的振幅

xlabel('頻率/hz');

ylabel('振幅');title('n=1024');grid on;

執行結果:

fs=100hz,nyquist頻率為fs/2=50hz。整個頻譜圖是以nyquist頻率為對稱軸的。並且可以明顯識別出訊號中含有兩種頻率成分:

15hz和40hz。由此可以知道fft變換資料的對稱性。因此用fft對訊號做譜分析,只需考察0~nyquist頻率範圍內的福頻特性。

若沒有給出取樣頻率和取樣間隔,則分析通常對歸一化頻率0~1進行。另外,振幅的大小與所用取樣點數有關,採用128點和1024點的相同頻率的振幅是有不同的表現值,但在同一幅圖中,40hz與15hz振動幅值之比均為4:1,與真實振幅0.

5:2是一致的。為了與真實振幅對應,需要將變換後結果乘以2除以n。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100hz,繪製:

(1)資料個數n=32,fft所用的取樣點數nfft=32;

(2)n=32,nfft=128;

(3)n=136,nfft=128;

(4)n=136,nfft=512。

clf;fs=100; %取樣頻率

ndata=32; %資料長度

n=32; �t的資料長度

n=0:ndata-1;t=n/fs; %資料對應的時間序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %時間域訊號

y=fft(x,n); %訊號的fourier變換

mag=abs(y); %求取振幅

f=(0:n-1)*fs/n; %真實頻率

subplot(2,2,1),plot(f(1:n/2),mag(1:n/2)*2/n); %繪出nyquist頻率之前的振幅

xlabel('頻率/hz');ylabel('振幅');

title('ndata=32 nfft=32');grid on;

ndata=32; %資料個數

n=128; %t採用的資料長度

n=0:ndata-1;t=n/fs; %時間序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);

y=fft(x,n);

mag=abs(y);

f=(0:n-1)*fs/n; %真實頻率

subplot(2,2,2),plot(f(1:n/2),mag(1:n/2)*2/n); %繪出nyquist頻率之前的振幅

xlabel('頻率/hz');ylabel('振幅');

title('ndata=32 nfft=128');grid on;

ndata=136; %資料個數

n=128; �t採用的資料個數

n=0:ndata-1;t=n/fs; %時間序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);

y=fft(x,n);

mag=abs(y);

f=(0:n-1)*fs/n; %真實頻率

subplot(2,2,3),plot(f(1:n/2),mag(1:n/2)*2/n); %繪出nyquist頻率之前的振幅

xlabel('頻率/hz');ylabel('振幅');

title('ndata=136 nfft=128');grid on;

ndata=136; %資料個數

n=512; �t所用的資料個數

n=0:ndata-1;t=n/fs; %時間序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);

y=fft(x,n);

mag=abs(y);

f=(0:n-1)*fs/n; %真實頻率

subplot(2,2,4),plot(f(1:n/2),mag(1:n/2)*2/n); %繪出nyquist頻率之前的振幅

xlabel('頻率/hz');ylabel('振幅');

title('ndata=136 nfft=512');grid on;

結論:(1)當資料個數和fft採用的資料個數均為32時,頻率解析度較低,但沒有由於添零而導致的其他頻率成分。

(2)由於在時間域內訊號加零,致使振幅譜中出現很多其他成分,這是加零造成的。其振幅由於加了多個零而明顯減小。

(3)fft程式將資料截斷,這時解析度較高。

(4)也是在資料的末尾補零,但由於含有訊號的資料個數足夠多,fft振幅譜也基本不受影響。

對訊號進行頻譜分析時,資料樣本應有足夠的長度,一般fft程式中所用資料點數與原含有訊號資料點數相同,這樣的頻譜圖具有較高的質量,可減小因補零或截斷而產生的影響。

例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)

(1)資料點過少,幾乎無法看出有關訊號頻譜的詳細資訊;

(2)中間的圖是將x(n)補90個零,幅度頻譜的資料相當密,稱為高密度頻譜圖。但從圖中很難看出訊號的頻譜成分。

(3)訊號的有效資料很長,可以清楚地看出訊號的頻率成分,一個是0.24hz,一個是0.26hz,稱為高解析度頻譜。

可見,取樣資料過少,運用fft變換不能分辨出其中的頻率成分。新增零後可增加頻譜中的資料個數,譜的密度增高了,但仍不能分辨其中的頻率成分,即譜的解析度沒有提高。只有資料點數足夠多時才能分辨其中的頻率成分。

4樓:匿名使用者

你要先能確定你在進行**時用的fs,還有fft時的位數n,也即你做完fft後,訊號y的長度。n=length(y),然後可以由ff=[0:n-1]*fs/n來確定頻率分佈,把它作為橫軸。

畫圖時用

plot(ff,abs(y))即可。

對一幅影象傅立葉變換後,顯示其頻譜圖的matlab語句?

5樓:匿名使用者

f = imread('tire.tif');

imshow(f)

f = fft2(f); % 傅氏bai變換fc = fftshift(f); % 中心化dufm = abs(fc); % 取模zhifigure, imshow(fm, [ ])figure, imshow(log(1+fm), [ ]) % 對數變換,增強顯示視覺dao效內果

g = ifftshift(fc); % 對fc去中心化g = ifft2(g); % 對g逆變換figure, imshow(g) % 原影象你要注意整個流容程,f ---> f ----> fc , 所以要回去的話當然是fc --- > g --- > g,就是先對fc去中心化得到g,再對g逆變換得到g,這樣才行。

matlab中怎麼把libsvm資料轉化成matlab格式

label vector,instance matrix libsvmread data.txt 用這個函式 data.txt是你的資料文字,label vector是類別號,instance matrix是屬性矩陣 matlab中怎麼把libsvm資料轉化成matlab格式 matlab中怎麼把l...

質粒轉化陽性對照怎麼做,質粒轉化的陽性和陰性對照是什麼

建議做兩個陽性對照 1 感受態細胞塗板 看看感受態活力,如果沒有克隆長出,證明感受態沒用了,換感受態 2 用已知載體轉化做對照 瞭解轉化體系和操作是否有問題 質粒轉化的陽性和陰性對照是什麼 陽性對照 確定連線產物已經轉化到感受態細胞中 將感受態細胞進行鋪板陰性對照 僅僅將感受態細胞進行鋪板 這麼做的...

在matlab中,怎麼將十進位制的數值轉化為二進位制,然後將二進位制的結果寫到文字中

matlab學習教程,或許對你以後得學習有幫助!用matlab程式設計,如何將一堆十進位制數轉化成二進位制數輸出 轉換方法 不需要了解進位制的轉換規則 include include void main 如果要處理小數,要把小數和整數部分分開處理,也不會太難 for x 0 255 dec2bin ...