1樓:東風冷雪
數學歸納法
假設n=k,可導
證明n=k+1,階可導,就行了
2樓:匿名使用者
因為等號右邊可導,因為可導函式與初等函式複合之後可導性不變,所以左邊也就可以求導
高等數學是不是主要學習函式
3樓:匿名使用者
函式與極限,
導數與微分,
微分中值定理,
不定積分和定積分,
微分方程.
這些在高中都有涉獵,學起來還是都是比較容易的.
空間解析幾何,
多元函式微分,
重積分,
曲線積分和曲面積分,
無窮級數,這
些需要用心學習苦下功夫了.
還有線性代數,
概率論,
向量分析等等.
如果你是學工科的話,這些數學全是基礎,一定要紮實學習,加油.
高等數學中的函式如何學習
4樓:匿名使用者
要學好高等數
學的函式,首先了解高等數學的特點。高等數學有三個顯著的特點:高度的抽象性;嚴謹的邏輯性;廣泛的應用性。
( 1 )高度的抽象性
數學的抽象性在簡單的計算中就已經表現出來。我們運用抽象的數字,卻不是每次都把它們同具體的物件聯絡起來。在數學的抽象中只留下量的關係和空間形式,而捨棄了其他一切。
它的抽象程度大大超過了自然科學中一般的抽象。
( 2 )嚴謹的邏輯性
數學中的每一個定理,不論驗證了多少例項,只有當它從邏輯上被嚴格地證明了的時候,才能在數學中成立。在數學中要證明一個定理,必須是從條件和已有的數學公式出發,用嚴謹的邏輯推理方法匯出結論。
( 3 )廣泛的應用性
高等數學具有廣泛的應用性。例如,掌握了導數概念及其運演算法則,就可以用它來刻畫和計算曲線的切線斜率、曲線的曲率等等幾何量;就可以用它來刻畫和計算速度、加速度、密度等等物理量;就可以用它來刻畫和計算產品產量的增長率、成本的下降率等等經濟量; …… 。掌握了定積分概念及其運演算法則,就可以用它來刻畫和計算曲線的弧長、不規則圖形的面積、不規則立體的體積等等幾何量;就可以用它來刻畫和計算變速運動的物體的行程、變力所做的功、物體的重心等等物理量;就可以用它來刻畫和計算總產量、總成本等等經濟量。
高等數學既為其它學科提供了便利的計算工具和數學方法,也是學習近代數學所必備的數學基礎。瞭解了這些就能學好高等數學的函式了。
5樓:匿名使用者
函式考察的題目有以下幾點:
1、定義域
2、值域
3、最值(最大最小)
4、圖象對稱
5、交點
6、平移
而最難的屬於後面3個,因此學習高中函式一定要掌握數學的重要思想,那就是數形結合,幾個典型的函式的圖象一定要牢牢掌握,對於快速而準確的解決問題有非常大的幫助,遇到什麼難題,我們可以共同**一下。
6樓:沙漠射手
我覺得數學學習沒有什麼特別好的拌飯 就是多做題 題做多了 自然就會總結出規律
高等數學都學什麼?
7樓:demon陌
高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
8樓:愛要一心
這是目錄:
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。
9樓:匿名使用者
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
它的資料和講義,網上有很多。
10樓:匿名使用者
主要就是定積分還有微積分方面的知識
11樓:天涯客
函式,極限,連續
一元函式微分
一元函式積分
多元函式微分
多元函式積分
常微分方程
在學高等數學之前,要學習多少種函式
12樓:我愛文文
正比例函式,一次函式,反比例函式,二次函式,銳角三角函式,這是讀高中前所學的所有函式。
13樓:匿名使用者
加減乘除,乘方開方,對數,指數,冪,極限,導數,微分積分,好像高等數學也就只涉及到這幾種運算了
14樓:藍翼臣
高等數學其實不難
我現在就在自學
只要你有毅力堅持
完全不需要什麼函式
有不懂的再去看那函式的介紹
我現在初三,學著不很難,
你也學高數啊,呵呵,哥哥還是弟弟...?
15樓:36寸液晶
要學習高中課本上的一次函式、二次函式、三角函式、反三角函式、指數函式、對數函式。
高等數學之前要學什麼數學?
16樓:匿名使用者
高等數學研究的是變數。
高等數學(也稱為微積分,它是幾門課程的總稱)是理、工科院校一門重要的基礎學科。作為一門科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性是數學最基本、最顯著的特點--有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。
嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。
尤其是到了現代,電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。因此,學好高等數學對我們來說相當重要。然而,很多學生對怎樣才能學好這門課程感到困惑。
要想學好高等數學,至少要做到以下四點:
首先,理解概念。數學中有很多概念。概念反映的是事物的本質,弄清楚了它是如何定義的、有什麼性質,才能真正地理解一個概念。
其次,掌握定理。定理是一個正確的命題,分為條件和結論兩部分。對於定理除了要掌握它的條件和結論以外,還要搞清它的適用範圍,做到有的放矢。
第三,在弄懂例題的基礎上作適量的習題。要特別提醒學習者的是,課本上的例題都是很典型的,有助於理解概念和掌握定理,要注意不同例題的特點和解法法在理解例題的基礎上作適量的習題。作題時要善於總結---- 不僅總結方法,也要總結錯誤。
這樣,作完之後才會有所收穫,才能舉一反三。
第四,理清脈絡。要對所學的知識有個整體的把握,及時總結知識體系,這樣不僅可以加深對知識的理解,還會對進一步的學習有所幫助。
高等數學中包括微積分和立體解析幾何,級數和常微分方程。其中尤以微積分的內容最為系統且在其他課程中有廣泛的應用.微積分的理論是由牛頓和萊布尼茨完成的.(當然在他們之前就已有微積分的應用,但不夠系統)無窮小和極限的概念微積分的基本概念的理解有很大難度。
高等數學分為幾個部分為:
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、向量代數與空間解析幾何
五、多元函式微分學
六、多元函式積分學
七、無窮級數
八、常微分方程
高數主要包括
一、 函式與極限分為
常量與變數
函式函式的簡單性態
反函式初等函式
數列的極限
函式的極限
無窮大量與無窮小量
無窮小量的比較
函式連續性
連續函式的性質及初等函式函式連續性
二、導數與微分
導數的概念
函式的和、差求導法則
函式的積、商求導法則
複合函式求導法則
反函式求導法則
高階導數
隱函式及其求導法則
函式的微分
三、導數的應用
微分中值定理
未定式問題
函式單調性的判定法
函式的極值及其求法
函式的最大、最小值及其應用
曲線的凹向與拐點
四、不定積分
不定積分的概念及性質
求不定積分的方法
幾種特殊函式的積分舉例
五、定積分及其應用
定積分的概念
微積分的積分公式
定積分的換元法與分部積分法
廣義積分
六、空間解析幾何
空間直角座標系
方向餘弦與方向數
平面與空間直線
曲面與空間曲線
八、多元函式的微分學
多元函式概念
二元函式極限及其連續性
偏導數全微分
多元複合函式的求導法
多元函式的極值
九、多元函式積分學
二重積分的概念及性質
二重積分的計演算法
三重積分的概念及其計演算法
十、常微分方程
微分方程的基本概念
可分離變數的微分方程及齊次方程
線性微分方程
可降階的高階方程
線性微分方程解的結構
二階常係數齊次線性方程的解法
二階常係數非齊次線性方程的解法
十一、無窮級數
導數的概念
在學習到數的概念之前,我們先來討論一下物理學中變速直線運動的瞬時速度的問題。
注:導數也就是差商的極限左、右導數
前面我們有了左、右極限的概念,導數是差商的極限,因此我們可以給出左、右導數的概念。若極限
存在,我們就稱它為函式y=f(x)在x=x0處的左導數。若極限
存在,我們就稱它為函式y=f(x)在x=x0處的右導數。
注:函式y=f(x)在x0處的左右導數存在且相等是函式y=f(x)在x0處的可導的充分必要條件
17樓:匿名使用者
有中學的基本數學知識就夠了(極限,三角函式用的稍微多點)。根據專業不同,用不同的高數教材,所學內容也不全相同。
理工科多用同濟第五版高數上下冊,內容為:一元、多元函式微積分+解析幾何+微分方程初步;
若為文科,不學曲線曲面積分,不學無窮級數,也不學三重積分,其他內容與理工科所學相同。
18樓:匿名使用者
具體說與高中的知識關聯大點
如何學好高等數學
19樓:程夏琦靜
大學高數並不難。
學習中注意,在第一學期要特別注意的有:(1)微積分的數學基礎是極限理論。(2)搞清微分、導數的概念,求導、求微基本方法(公式,特別是複合函式求導,隱函式求導、引數方程函式求導方法)。
(3)三大中值定理(羅爾定理、拉格朗日中值定理、柯西中值定理)的證明及導數在函式性狀(單調、凹凸、極值等)的求法。(4)積分(不定積分,定積分求法,--換元法、分部積分法)(5)定積分應用(特別是面積、體積、曲線長的計算以及一些簡單的物理應用)。第二學期,其實是在第一學期上述基礎上,將函式從一元到多元(特別是二元)的一系列推廣,在此先不討論。
學習中,只要抓好「三基」--基本概念、基本原理、基本計算,多練習和推理,一定會將這門數學學得頂呱呱的。
個人覺得學好數學首先要學會嚴謹
知其然更知其所以然
我覺得概念很重要
再就是做題
還要學會總結做題的步驟
拿到這個題改怎麼做
高數難的就是求導求極限求積分還有微分方程
學的就只有那幾種
可分離變數齊次方程可化為齊次方程的型別一階線性方程貝努裡方程全微分方程還要高階方程
其他都好說
平時多總結解題技巧注意總結知識點熟能生巧
樓主您好
首先,高數不比高中、初中的數學,比如多花點時間去鑽研,像微積分,複變函式,常微分方程這類的都不是什麼困難的事情;其次,要多練習具有課題針對性的練習,針對某一個知識的系統練習。將基本概念搞清楚;例如什麼是極限、導數、積分等等。此外,必須要熟記常用初等函式的求導數、原函式的公式。
當你發現自己在做題的時候不用問人和參考書本上的答案了,那你的高數就過關了。
一道高數題,關於極限的。求Ln(1 ax)x的極限,x趨近於零。求Ln(1 ax)x的極限,x趨近於零
對於求lim ln 1 ax x 只需要求 1 ax x的極限,由於 1 ax x的極限為a,所以ln 1 ax x 的極限為ln a 當x趨近於1 時,1 1 x 趨近正無窮大,而arctan y,y趨向於正無窮大時,arctan y趨近於pi 2,所以當x趨近於1 時,arctan1 1 x 趨...
關於一道三角函式的化簡題
我們會bai用到公式 它們成立的條件是ducosx 2與sinx 2本身是 0的.比如當x 0,且zhi pi.首先我們對原dao 來的式子作變形,得到 最外層版根號的分子與分母都權除以2,得到 反覆這樣操作,最終得到 沒有辦法,我們只能把 cosa 2寫成cos arcos cos a 2 然後由...
一道關於數學加法原理的題,一道關於數學的題,大家幫幫忙!
一位數,1 5,有5個。0不是正整數,不能計算在內 兩位數,十位上不能選0,有5種選法,選掉10位後,剩下5個數均可排在個位 所以,兩位數有5 5 25個 三位數,百位上不能選0,有5種選法,剩下十位有6 1 5種選法,個位有6 2 4種選法,所以,三位數有5 5 4 100個 共有5 25 100...