當平均數不能代表一組資料的整體水平,而中位數和眾數同時出現的

2021-04-30 14:37:06 字數 5456 閱讀 8872

1樓:

中位數 因為如果中位數與眾數同時出現且比較接近時,選較大的那個。而平均數受極端資料的影響。

中位數 眾數 平均數有什麼不同

2樓:小小小白

一、定義不同

平均數:是統計學中最常用的統計量,用來表明資料中各觀測值相對集中較多的中心位置。

中位數:中位數是指將統計總體當中的各個變數值按大小順序排列起來,形成一個數列,處於變數數列中間位置的變數值就稱為中位數。

眾數:一組資料中,出現次數最多的資料,是一組資料中的原資料,而不是相應的次數。

二、演算法不同

平均數:計算需要用到所有的資料,資料總和除以資料總數。在計算平均分的應用中,就需要去掉一個最高分,去掉一個最低分,再計算其他評委所打分數的平均分,這樣做比較公平,可以減少極端資料對平均分的影響,又考慮了大部分評委的意見,使求得的平均數更具有代表性。

公式:x=1/n(x1+x2+x3+……+xn

中位數:將資料排序後,位置在最中間的數值。即將資料分成兩部分,一部分大於該數值,一部分小於該數值。

眾數: 就是在一排數字中,出現次數最多的數字。

三、個數不同

在一組資料中,平均數和中位數都具有惟一性,但眾數有時不具有惟一性。一組資料可能有多個眾數,也可能沒有眾數。比如數列1:

1、2、3、4、5,就沒有眾數;而數列2:1、2、2、3、3,就含有兩個眾數,分比為2和3。

四、呈現不同

平均數:是一個「虛擬」的數,是通過計算得到的,它不是資料中的原始資料。

中位數:是一個不完全「虛擬」的數。當一組資料有奇數個時,它就是該組資料排序後最中間的那個資料,是這組資料中真實存在的一個資料;但在資料個數為偶數的情況下,中位數是最中間兩個資料的平均數,它不一定與這組資料中的某個資料相等,此時的中位數就是一個虛擬的數。

眾數:是一組資料中的原資料,它是真實存在的。

五、代表不同

平均數可以反映一組資料的平均水平;是反映資料集中趨勢的一項指標。

眾數是一組資料中出現次數最多的數,即眾數可以反映一組資料的多數水平;

中位數是一組資料中最中間位置的數(奇數個資料時)或最中間的兩個數的平均數(偶數個資料時),所以中位數可以反映一組資料的中間位置水平。

六、特點不同

平均數:與每一個資料都有關,其中任何資料的變動都會相應引起平均數的變動。

中位數:與資料的排列位置有關,某些資料的變動對它沒有影響。

眾數:與資料出現的次數有關,著眼於對各資料出現的頻率的考察。

七、作用不同

平均數:是統計中最常用的資料代表值,比較可靠和穩定,因為它與每一個資料都有關,反映出來的資訊最充分。平均數既可以描述一組資料本身的整體平均情況,也可以用來作為不同組資料比較的一個標準。

因此,它在生活中應用最廣泛,比如我們經常所說的平均成績、平均身高、平均體重等。

中位數:作為一組資料的代表,可靠性比較差,因為它只利用了部分資料。但當一組資料的個別資料偏大或偏小時,用中位數來描述該組資料的集中趨勢就比較合適。

眾數:作為一組資料的代表,可靠性也比較差,因為它也只利用了部分資料。在一組資料中,如果個別資料有很大的變動,且某個資料出現的次數最多,此時用該資料(即眾數)表示這組資料的「集中趨勢」就比較適合。

3樓:匿名使用者

它們之間的區別,主要表現在以下方面。

1、定義不同

平均數:一組資料的總和除以這組資料個數所得到的商叫這組資料的平均數。

中位數:將一組資料按大小順序排列,處在最中間位置的一個數叫做這組資料的中位數 。

眾數:在一組資料中出現次數最多的數叫做這組資料的眾數。

2、求法不同

平均數:用所有資料相加的總和除以資料的個數,需要計算才得求出。

中位數:將資料按照從小到大或從大到小的順序排列,如果資料個數是奇數,則處於最中間位置的數就是這組資料的中位數;如果資料的個數是偶數,則中間兩個資料的平均數是這組資料的中位數。它的求出不需或只需簡單的計算。

眾數:一組資料中出現次數最多的那個數,不必計算就可求出。

3、個數不同

在一組資料中,平均數和中位數都具有惟一性,但眾數有時不具有惟一性。在一組資料中,可能不止一個眾數,也可能沒有眾數。

4、呈現不同

平均數:是一個「虛擬」的數,是通過計算得到的,它不是資料中的原始資料。

中位數:是一個不完全「虛擬」的數。當一組資料有奇數個時,它就是該組資料排序後最中間的那個資料,是這組資料中真實存在的一個資料;但在資料個數為偶數的情況下,中位數是最中間兩個資料的平均數,它不一定與這組資料中的某個資料相等,此時的中位數就是一個虛擬的數。

眾 數:是一組資料中的原資料 ,它是真實存在的。

5、代表不同

平均數:反映了一組資料的平均大小,常用來一代表資料的總體 「平均水平」。

中位數:像一條分界線,將資料分成前半部分和後半部分,因此用來代表一組資料的「中等水平」。

眾數:反映了出現次數最多的資料,用來代表一組資料的「多數水平」。

這三個統計量雖反映有所不同,但都可表示資料的集中趨勢,都可作為資料一般水平的代表。

6、特點不同

平均數:與每一個資料都有關,其中任何資料的變動都會相應引起平均數的變動。主要缺點是易受極端值的影響,這裡的極端值是指偏大或偏小數,當出現偏大數時,平均數將會被抬高,當出現偏小數時,平均數會降低。

中位數:與資料的排列位置有關,某些資料的變動對它沒有影響;它是一組資料中間位置上的代表值,不受資料極端值的影響。

眾數:與資料出現的次數有關,著眼於對各資料出現的頻率的考察,其大小隻與這組資料中的部分資料有關,不受極端值的影響,其缺點是具有不惟一性,一組資料中可能會有一個眾數,也可能會有多個或沒有 。

7、作用不同

平均數:是統計中最常用的資料代表值,比較可靠和穩定,因為它與每一個資料都有關,反映出來的資訊最充分。平均數既可以描述一組資料本身的整體平均情況,也可以用來作為不同組資料比較的一個標準。

因此,它在生活中應用最廣泛,比如我們經常所說的平均成績、平均身高、平均體重等。

中位數:作為一組資料的代表,可靠性比較差,因為它只利用了部分資料。但當一組資料的個別資料偏大或偏小時,用中位數來描述該組資料的集中趨勢就比較合適。

眾數:作為一組資料的代表,可靠性也比較差,因為它也只利用了部分資料。。在一組資料中,如果個別資料有很大的變動,且某個資料出現的次數最多,此時用該資料(即眾數)表示這組資料的「集中趨勢」就比較適合。

平均數、中位數和眾數的聯絡與區別:

平均數應用比較廣泛,它作為一組資料的代表,比較穩定、可靠。但平均數與一組資料中的所有資料都有關係,容易受極端資料的影響;簡單的說就是表示這組資料的平均數。中位數在一組資料中的數值排序中處於中間的位置,人們由中位數可以對事物的大體進行判斷和掌控,它雖然不受極端資料的影響,但可靠性比較差;所以中位數只是表示這組資料的一般情況。

眾數著眼對一組資料出現的頻數的考察,它作為一組資料的代表,它不受極端資料的影響,其大小與一組資料中的部分資料有關,當一組資料中,如果個別資料有很大的變化,且某個資料出現的次數較多,此時用眾數表示這組資料的集中趨勢,比較合適,體現了整個資料的集中情況。

平均數、中位數和眾數它們都有各自的的優缺點:

平均數:(1)需要全組所有資料來計算;

(2)易受資料中極端數值的影響.

中位數:(1)僅需把資料按順序排列後即可確定;

(2)不易受資料中極端數值的影響.

眾 數:(1)通過計數得到;

(2)不易受資料中極端數值的影響

4樓:藍天玲

中位數:將資料排序(從大到小或從小到大)後,位置在最中間的數值。即將資料分成兩部分,一部分大於該數值,一部分小於該數值。

中位數的位置:當樣本數為奇數時,中位數=第(n+1)/2個資料 ; 當樣本數為偶數時,中位數為第n/2個資料與第n/2+1個資料的算術平均值 。

眾數:是一組資料中出現次數最多的數值,有時眾數在一組數中有好幾個。簡單的說,就是一組資料中佔比例最多的那個數。

平均數是指在一組資料中所有資料之和再除以資料的個數。

5樓:匿名使用者

平均數:是統計學中最常用的統計量,用來表明資料中各觀測值相對集中較多的中心位置。

怎麼分辨什麼時候用眾數,平均數,中位數來表示一組資料的平均水平

6樓:沒好時候

⒈眾數。

一組資料中出現次數最多的那個資料,叫做這組資料的眾數。

⒉眾數的特點。

①眾數在一組資料中出現的次數最多;②眾數反映了一組資料的集中趨勢,當眾數出現的次數越多,它就越能代表這組資料的整體狀況,並且它能比較直觀地瞭解到一組資料的大致情況。但是,當一組資料大小不同,差異又很大時,就很難判斷眾數的準確值了。此外,當一組資料的那個眾數出現的次數不具明顯優勢時,用它來反映一組資料的典型水平是不大可靠的。

3.眾數與平均數的區別。

眾數表示一組資料中出現次數最多的那個資料;平均數是一組資料中表示平均每份的數量。

4.中位數的概念。

一組資料按大小順序排列,位於最中間的一個資料(當有偶數個資料時,為最中間兩個資料的平均數)叫做這組資料的中位數。

5.眾數、中位數及平均數的求法。

①眾數由所給資料可直接求出;②求中位數時,首先要先排序(從小到大或從大到小),然後根據資料的個數,當資料為奇數個時,最中間的一個數就是中位數;當資料為偶數個時,最中間兩個數的平均數就是中位數。③求平均數時,就用各資料的總和除以資料的個數,得數就是這組資料的平均數。

6.中位數與眾數的特點。

⑴中位數是一組資料中唯一的,可能是這組資料中的資料,也可能不是這組資料中的資料;

⑵求中位數時,先將資料有小到大順序排列,若這組資料是奇數個,則中間的資料是中位數;若這組資料是偶數個時,則中間的兩個資料的平均數是中位數;

⑶中位數的單位與資料的單位相同;

⑷眾數考察的是一組資料中出現的頻數;

⑸眾數的大小隻與這組數的個別資料有關,它一定是一組資料中的某個資料,其單位與資料的單位相同;

(6)眾數可能是一個或多個甚至沒有;

(7)平均數、眾數和中位數都是描述一組資料集中趨勢的量。

7.平均數、中位數與眾數的異同:

⑴平均數、眾數和中位數都是描述一組資料集中趨勢的量;

⑵平均數、眾數和中位數都有單位;

⑶平均數反映一組資料的平均水平,與這組資料中的每個數都有關係,所以最為重要,應用最廣;

⑷中位數不受個別偏大或偏小資料的影響;

⑸眾數與各組資料出現的頻數有關,不受個別資料的影響,有時是我們最為關心的資料。

8.平均數、眾數和中位數三種統計資料在生活中的意義。

平均數說明的是整體的平均水平;眾數說明的是生活中的多數情況;中位數說明的是生活中的中等水平。

9.如何通過平均數、眾數和中位數對錶面現象到背景材料進行客觀分析。

在個別的資料過大或過小的情況下,「平均數」代表資料整體水平是有侷限性的,也就是說個別極端資料是會對平均數產生較大的影響的,而對眾數和中位數的影響則不那麼明顯。所以,這時要用眾數活中位數來代表整體資料更合適。即:

如果在一組相差較大的資料中,用中位數或眾數作為表示這組資料特徵的統計量往往更有意義。數是樣本中出現次數最多的那個數。他們都可以來估計期望

同一組資料分別用幾何平均數與算數平均數求平均值得出的兩

幾何平均數是2個數乘了以後再開方,算術平均數是加了以後除2.算術平均數特點 1.算術平均數是一個良好的集中量數,具有反應靈敏 確定嚴密 簡明易解 計算簡單 適合進一步演算和較小受抽樣變化的影響等優點。2.算術平均數易受極端資料的影響,這是因為平均數反應靈敏,每個資料的或大或小的變化都會影響到最終結果...

已知一組資料為 4,5,5,5,6其中平均數 中位數和眾數的大小關係是A平均數中位數

平均數 1 5 4 5 5 5 6 5,中位數是5,在這組資料中5出現3次,其它數只出現一次,則眾數是5,所以眾數 中位數 平均數 故選c 已知一組資料為 4,5,5,5,6 其中平均數 中位數和眾數的大小關係是 a 平均數 中位數 眾數 平均數 1 5 4 5 5 5 6 5,中位數是5,在這組資...

有兩組數,第一組數的平均數是736,第二組數的平均數是

把總個數當bai做 du1 可設第六組為zhix則 13.6x 1如 dao.8 1 x 10.4,13.6x 1如.8 1如.8x 10.4,0.8x 1.6,x 4 五 則第二版組為 權1 4 五 3 五 5們的比為 4 五 3 五 4 3.故答案為4 3.有兩組數,第一組數的平均數是12.8,...