指數函式運演算法則

2022-02-21 15:41:49 字數 5245 閱讀 7144

1樓:肖繼說影視

指數函式運演算法則公式,指數運算理解道理

2樓:匿名使用者

同底數冪相乘,底數不變,指數相加;(a^m)*(a^n)=a^(m+n)

同底數冪相除,底數不變,指數相減;(a^m)÷(a^n)=a^(m-n)

冪的乘方,底數不變,指數相乘;(a^m)^n=a^(mn)積的乘方,等於每一個因式分別乘方;(ab)^n=(a^n)(b^n)

3樓:二聰

a^m × a^n=a^(m+n),

(a^m)^n=a^(mn)

4樓:數理學習者

a^m . a^n = a^(m + n)a^m / a^n = a^(m - n)(a^m)^n = a^(mn)

(a^m)^(1/n) = a^(m/n)

5樓:大大軒

指數函式等於三規則在高中的數學課本上,有你可以查閱一下

6樓:匿名使用者

指數函式指數函式的一般形式為y=a^x(a>0且不=1) ,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函式圖形的情況。

在函式y=a^x中可以看到:

(1) 指數函式的定義域為所有實數的集合,這裡的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。

(2) 指數函式的值域為大於0的實數集合。

(3) 函式圖形都是下凹的。

(4) a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於y軸與x軸的正半軸的單調遞減函式的位置,趨向分別接近於y軸的正半軸與x軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6) 函式總是在某一個方向上無限趨向於x軸,永不相交。

(7) 函式總是通過(0,1)這點

(8) 顯然指數函式無界。

(9) 指數函式既不是奇函式也不是偶函式。

(10)當兩個指數函式中的a互為倒數時,此函式影象是偶函式。 例1:下列函式在r上是增函式還是減函式?

說明理由. ⑴y=4^x 因為4>1,所以y=4^x在r上是增函式; ⑵y=(1/4)^x 因為0<1/4<1,所以y=(1/4)^x在r上是減函式1對數的概念 如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.

由定義知: ①負數和零沒有對數; ②a>0且a≠1,n>0; ③loga1=0,logaa=1,alogan=n,logaab=b. 特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.

718 28…)為底的對數叫做自然對數,記作logen,簡記為lnn. 2對數式與指數式的互化 式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數) 3對數的運算性質 如果a>0,a≠1,m>0,n>0,那麼 (1)loga(mn)=logam+logan. (2)logamn=logam-logan.

(3)logamn=nlogam (n∈r).

記憶口決

有理數的指數冪,運演算法則要記住。

指數加減底不變,同底數冪相乘除。

指數相乘底不變,冪的乘方要清楚。

積商乘方原指數,換底乘方再乘除。

非零數的零次冪,常值為 1不糊塗。

負整數的指數冪,指數轉正求倒數。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

指數函式運演算法則

7樓:匿名使用者

指數函式指數函式的一般形式為y=a^x(a>0且不=1) ,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函式圖形的情況。

在函式y=a^x中可以看到:

(1) 指數函式的定義域為所有實數的集合,這裡的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。

(2) 指數函式的值域為大於0的實數集合。

(3) 函式圖形都是下凹的。

(4) a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於y軸與x軸的正半軸的單調遞減函式的位置,趨向分別接近於y軸的正半軸與x軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6) 函式總是在某一個方向上無限趨向於x軸,永不相交。

(7) 函式總是通過(0,1)這點

(8) 顯然指數函式無界。

(9) 指數函式既不是奇函式也不是偶函式。

(10)當兩個指數函式中的a互為倒數時,此函式影象是偶函式。 例1:下列函式在r上是增函式還是減函式?

說明理由. ⑴y=4^x 因為4>1,所以y=4^x在r上是增函式; ⑵y=(1/4)^x 因為0<1/4<1,所以y=(1/4)^x在r上是減函式1對數的概念 如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.

由定義知: ①負數和零沒有對數; ②a>0且a≠1,n>0; ③loga1=0,logaa=1,alogan=n,logaab=b. 特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.

718 28…)為底的對數叫做自然對數,記作logen,簡記為lnn. 2對數式與指數式的互化 式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數) 3對數的運算性質 如果a>0,a≠1,m>0,n>0,那麼 (1)loga(mn)=logam+logan. (2)logamn=logam-logan.

(3)logamn=nlogam (n∈r).

記憶口決

有理數的指數冪,運演算法則要記住。

指數加減底不變,同底數冪相乘除。

指數相乘底不變,冪的乘方要清楚。

積商乘方原指數,換底乘方再乘除。

非零數的零次冪,常值為 1不糊塗。

負整數的指數冪,指數轉正求倒數。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

8樓:匿名使用者

有理數的指數冪,運演算法則要記住。

指數加減底不變,同底數冪相乘除。 //a^(n+m)=(a^n)×(a^m) 如:6^(2+3)=(6^2)×(6^3)

指數相乘底不變,冪的乘方要清楚。 //a^(n×m)=(a^n)^m 如:6^(2×3)=(6^2)^3

積商乘方原指數,換底乘方再乘除。 //(a×b)^n=(a^n)×(b^n) 如:(6×7)^2=(6^2)×(7^2)

非零數的零次冪,常值為 1不糊塗。 //a^o=1 (a≠0) 如:6^0=1,7^0=1,....

負整數的指數冪,指數轉正求倒數。 //a^(-n)=1/(a^n) 如:6^(-2)=1/(6^2)

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。 //n√(a^m)=a^(m/n) 如:4√(9^2)=9^(2/4), 8的1/3次冪=2

注: ^ 為數學符號(幾的幾次方),如 2的3次方=2^3=8

9樓:太極鳥6極樂鳥

指數函式指數函式的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函式的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函式圖形的情況。 在函式y=a^x中可以看到: (1) 指數函式的定義域為所有實數的集合,這裡的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。

(2) 指數函式的值域為大於0的實數集合。 (3) 函式圖形都是下凹的。 (4) a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於y軸與x軸的正半軸的單調遞減函式的位置,趨向分別接近於y軸的正半軸與x軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。 (6) 函式總是在某一個方向上無限趨向於x軸,永不相交。

(7) 函式總是通過(0,1)這點 (8) 顯然指數函式無界。 (9) 指數函式既不是奇函式也不是偶函式。 (10)當兩個指數函式中的a互為倒數是,此函式影象是偶函式。

例1:下列函式在r上是增函式還是減函式?說明理由.

⑴y=4^x 因為4>1,所以y=4^x在r上是增函式; ⑵y=(1/4)^x 因為0<1/4<1,所以y=(1/4)^x在r上是減函式1對數的概念 如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數. 由定義知:

①負數和零沒有對數; ②a>0且a≠1,n>0; ③loga1=0,logaa=1,alogan=n,logaab=b. 特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logen,簡記為lnn.

2對數式與指數式的互化 式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數) 3對數的運算性質 如果a>0,a≠1,m>0,n>0,那麼 (1)loga(mn)=logam+logan. (2)logamn=logam-logan. (3)logamn=nlogam (n∈r).

有理數的指數冪,運演算法則要記住。

指數加減底不變,同底數冪相乘除。

指數相乘底不變,冪的乘方要清楚。

積商乘方原指數,換底乘方再乘除。

非零數的零次冪,常值為 1不糊塗。

負整數的指數冪,指數轉正求倒數。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

看到分數指數冪,想到底數必非負。

乘方指數是分子,根指數要當分母。

指數冪的指數冪的運演算法則指數冪運演算法則是什麼?

口訣 指數加減底不變,同底數冪相乘除.指數相乘底不變,冪的乘方要清楚.積商乘方原指數,換底乘方再乘除.非零數的零次冪,常值為 1不糊塗.負整數的指數冪,指數轉正求倒數.看到分數指數冪,想到底數必非負.乘方指數是分子,根指數要當分母.說明 拓展資料 一般地,在數學上我們把n個相同的因數a相乘的積記做a...

向量的運演算法則向量的運演算法則是什麼?

向量的加法滿足平行四邊形法則和三角形法則。向量的加法ob oa oc。a b x x y y a 0 0 a a。向量加法的運算律 交換律 a b b a 結合律 a b c a b c 2 向量的減法 如果a b是互為相反的向量,那麼a b,b a,a b 0.0的反向量為0 向量的減法 ab a...

自然對數的運演算法則?和公式對數公式的運演算法則

常數e的含義是單位時間內,持續的翻倍增長所能達到的極限值。自然對數的底e是由一個重要極限給出的。我們定義 當n趨於無窮大時,e是一個無限不迴圈小數,其值約等於2.718281828459 它是一個超越數。公式和法則 loga mn logam logan loga m n logam logan 對...