1樓:匿名使用者
十字相乘法,要按某個字母降冪排列,分解第一項和第三項合成第二項。看圖:
十字相乘法怎麼做? 10
2樓:江天昊
十字相乘法的方法簡單來講就是:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。
十字相乘法能把二次三項式分解因式(不一定在整數範圍內)。對於形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好等於一次項的係數b,那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:
x²+(p+q)x+pq=(x+p)(x+q)。
怎麼用十字相乘法。十字相乘法口訣是什麼
3樓:小小芝麻大大夢
1、十字相乘法的方法口訣:
十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:
(1)用十字相乘法來分解因式。
(2)用十字相乘法來解一元二次方程。
十字相乘法的優點:
用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
十字相乘法的缺陷:
1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。
2、十字相乘法只適用於二次三項式型別的題目。
3、十字相乘法比較難學。
擴充套件資料
十字分解法能用於二次三項式(一元二次式)的分解因式(不一定是整數範圍內)。對於像ax²+bx+c=(a1x+c1)(a2x+c2)這樣的整式來說,這個方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積,把常數項c分解成兩個因數c1,c2的積,並使a1c2+a2c1正好等於一次項的係數b。
那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。
當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
4樓:吳敏和
十字相乘法的方法簡單來講就是:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。其實就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。
十字相乘法能把二次三項式分解因式(不一定在整數範圍內)。對於形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好等於一次項的係數b,那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:
x²+(p+q)x+pq=(x+p)(x+q)。
5樓:要不辛
十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
6樓:橙橙橙
都不審題,看看樓主問的啥,x^2-4x+4=0啊,-2 + -2=中間-4,故答案為(x-2)*(x-2)=(x-2)^2
7樓:ooo賬號登入
x平方+(a+b)x+ab=(x+a)(x+b)
8樓:匿名使用者
公式:㎡±ab±mb±ma=(m±a)(m±b)
9樓:紹涆
什麼叫函式
十字相乘法
因式分解法
10樓:fx_自由風
首尾分解
交叉相乘
求和湊中
平行書寫
11樓:塗山容紅
頭尾分解,交叉相乘,求和湊中,觀察試驗。
12樓:快樂大某了
咯啦咯考慮圖我努力咯兔兔
十字相乘法怎麼做啊
13樓:漆雕姝鍾梓
十字相乘法能把某些二次三項式分解因式。這種方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1•a2,把常數項c分解成兩個因數c1,c2的積c1•c2,並使a1c2+a2c1正好是一次項b,那麼可以直接寫成結果:在運用這種方法分解因式時,要注意觀察,嘗試,並體會它實質是二項式乘法的逆過程。
當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號
十字相乘法怎麼計算?
14樓:
我們要把二次項拆成兩個因式的積,
常數項拆成兩個常數的積,然後十字圖案交叉相乘,若合併後的結果為一次項,說明分解正確,再把每一行寫在一個括號裡相乘即可。若合併後的結果不是一次項,需要重新調整嘗試。舉例如下:
例:x²–6x+5(二次項係數為1的情形)
x - 5
x –1
交叉相乘並相加得:
–x–5x=-6x等於一次項
說明分解正確
∴x²–6x+5=(x–5)(x–1)
(把每行寫在一個括號裡即可)
擴充套件資料
十字分解法能用於二次三項式(一元二次式)的分解因式(不一定是整數範圍內)。對於像ax²+bx+c=(a1x+c1)(a2x+c2)這樣的整式來說。
這個方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積,把常數項c分解成兩個因數c1,c2的積,並使a1c2+a2c1正好等於一次項的係數b。那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。基本式子:
x²+(p+q)x+pq=(x+p)(x+q)。
15樓:柒月黑瞳
十字分解法計算簡單來講就是:十字左邊相乘等於二次項,右邊相乘等於常數項,交叉相乘再相加等於一次項。也就是運用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆運算來進行因式分解。
十字分解法能把二次三項式分解因式(不一定在整數範圍內)。對於形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項係數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好等於一次項的係數b,那麼可以直接寫成結果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在運用這種方法分解因式時,要注意觀察,嘗試,並體會,它的實質是二項式乘法的逆過程。當首項係數不是1時,往往需要多次試驗,務必注意各項係數的符號。
基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
例題:例1
把2x²-7x+3分解因式.
分析:先分解二次項係數,分別寫在十字交叉線的左上角和左下角,再分解常數項,分
別寫在十字交叉線的右上角和右下角,然後交叉相乘,求代數和,使其等於一次項係數.
分解二次項係數(只取正因數 因為取負因數的結果與正因數結果相同!):
2=1×2=2×1;
分解常數項:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用畫十字交叉線方法表示下列四種情況:
1 3╳
2 11×1+2×3=7 ≠-7
1 1╳
2 31×3+2×1=5 ≠-7
1 -1
╳2 -3
1×(-3)+2×(-1)=-5 ≠-7
1 -3
╳2 -1
1×(-1)+2×(-3)=-7
經過觀察,第四種情況是正確的,這是因為交叉相乘後,兩項代數和恰等於一次項係數-7。
解 2x²-7x+3=(x-3)(2x-1)
通常地,對於二次三項式ax²+bx+c(a≠0),如果二次項係數a可以分解成兩個因數之積,即a=a1a2,常數項c可以分解成兩個因數之積,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
╳a2 c2
a1c2 + a2c1
按斜線交叉相乘,再相加,得到a1c2+a2c1,若它正好等於二次三項式ax²+bx+c的一次項係數b,即a1c2+a2c1=b,那麼二次三項式就可以分解為兩個因式a1x+c1與a2x+c2之積,即
ax^2+bx+c=(a1x+c1)(a2x+c2)
像這種藉助畫十字交叉線分解係數,從而幫助我們把二次三項式分解因式的方法,通常叫做十字分解法.
判定:對於形如ax²+bx+c的多項式,在判定它能否使用十字分解法分解因式時,可以使用δ=b²-4ac進行判定。當δ為完全平方數時,可以在整數範圍對該多項式進行十字相乘。
16樓:杜麗姿僑學
那個方法應該是解(ax方加bx加c)這樣的方程式的。十字相乘左邊兩個數(上下位置放的)相成等於a,右邊兩個數(同樣上下放)相成等於c.然後前兩個數的上面的數乘以後兩個數下面的數,前兩個數下面那個數乘以後兩個數上面那個數,然後把兩次的得數相加等於b,這樣基本就可以分成(左邊上面的數乘以x加上右邊上面的數)乘以(左邊下面的數乘以x加上右邊下面的數)注意括號啊!
分成這樣就容易解了,呵呵
17樓:逯寒門子琪
是湊出來的,將方程二此項係數和常數項分別拆成兩個數相乘,例如:解方程:
2x平方-3x+1=0可以這樣拆 成四組 :2x1
2x-1x1
x-1x 1
x -1
2x 1
2x-1再將對角相乘的兩數相加,若與一次項係數相同就行了解得:
(2x-1)(x-1)=0
x=1/2或1
18樓:柏希蓉昌彗
1、十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式型別的題目。3、十字相乘法比較難學。
例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為1-2
1╳6所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題
解:因為12
5╳-4所以5x²+6x-8=(x+2)(5x-4)
十字相乘法法只適用於一元二次方程或者多項式,而且只能是二次三項式,
10x2
-21xy+2y
2,這個不能使用十字相乘法。
關於相乘法,關於十字相乘法
十字相乘法是因式分解中12種方法之一,另外十一種分別是 1分組分解法 2.拆添項法 3.配方法 4.因式定理 公式法 5.換元法 6.主元法 7.特殊值法8.待定係數法 9.雙十字相乘法 10.二次多項式11.提公因式法 十字分解法的方法簡單來講就是 十字左邊相乘等於二次項係數,右邊相乘等於常數項,...
相乘法誰會,十字相乘法 誰會?
十字相乘法是分解因式的一種方法。1 十字相乘法的具體方法 十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。2 十字相乘法的用處 1 用十字相乘法來分解因式。2 用十字相乘法來解一元二次方程。3 十字相乘法的優點 用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量...
相乘法如何計算,十字相乘法如何計算?
拆分的那兩個係數a,b,使得axb 常數項,a b 一次項係數 都是包含符號的 十字相乘法的方法簡單來講就是 十字左邊相乘等於二次項,右邊相乘等於常數項,交叉相乘再相加等於一次項。其實就是運用乘法公式 x a x b x a b x ab的逆運算來進行因式分解。十字相乘法能把某些二次三項式分解因式。...