1樓:匿名使用者
舉幾個例子。
1.拆分為簡單的已知圖形
如圖,陰影部分面積不是一下就有公式可套,但可拆分為兩個三角形
所以陰影面積=4*6/2+4*4/2=20
2.長方形與半圓組合
求陰影部分面積
解法一:先輸出右下角空白部分面積,即圖中s1
再用△abc面積-s1機的陰影部分面積
s1=正方形面積-扇形面積=2²-π2²/4=4-π
s△abc=2*4/2=4
所以陰影部分面積=4-(4-π)=π
解法二:長髮形對角線與中線交於一點o
顯然可以看出△coe與△aof完全相等,可進行陰影部分等面積割補,如圖將綠色部分移動到紅色部分去,重新組合成一個完整的扇形
所以陰影部分面積=π2²/4=π
3.舉個看上去不好下手或計算容易混亂的題
邊長為a的正方形,以各頂點為圓心作圓,使圓通過正方形中心,求陰影部分面積
(用a的表示式表示)
這個題我直接採用圖形給你展示割補法的好處
將左圖紅色部分眼白色正方形對角線剖開成8個全等的部分,4個拼接到右圖紅色部分,剩下4個拼接到綠色部分
顯然上圖陰影部分面積成了4個白色半圓加上2倍紅色部分面積(正方形-圓)
所以圖形再次變為
這下變成2個圓+右邊紅色的了,又很明顯兩個圓剛好填充到正方形空白部分裡
變為了兩個正方形面積
最後,將很複雜難以下手的陰影部分等價成兩個正方形面積了,只需要找到正方形邊長即可計算。
由圖可知,此正方形邊長為題目所給邊長為a的正方形的對角線。
小學好像沒學帶根號的,那麼可以根據直角三角形斜邊的平方=直角邊平方和來算出大正方形邊長平方
所以大正方形b²=2a²
大正方形面積=b²=2a²
所以題目所求陰影部分面積=2b²=4a²
4.像上面例子,是不是越做越有趣啊。要做好這類題,一定要多觀察,多思考,考慮多種方法來解答,多找題目練習,最後自己總結,以後再遇到這類題就輕鬆了。
祝你學習進步!!
2樓:筱霏
把組合圖形分割成學過的圖形,然後一個一個的算,算好了加起來
3樓:匿名使用者
舉個例子幫你分析看看
數學五年級上冊練習冊計算組合圖形的面積看圖應用題
4樓:yq左手悲傷
10×16-2×10-16×2+2×2=112
(16-2)×(10-2)=112
5樓:鞠令顓孫梓敏
五年級上冊數學組合圖形的面積的計算怎麼算
有什麼有效的數學學習方法?
6樓:海風教育
初中數學
寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
複習筆記
初中數學寶典----複習
很多的學生在剛開始的時候學習這們課程不費勁但是往後可能會學的非常吃力,其實這就是因為在學習後邊的內容時將之前的內容忘掉了,所以會導致學習比較吃力,所以現在就需要用到我們的初中數學寶典--複習.
在數學的複習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此我們要在自己的腦海中建立一個數學的知識樹.
我們在複習數學的時候,一定要對基礎的知識進行整理和回顧,數學是一個階梯式的課程,因此我們要建立起一個數學的知識樹,我們要先在大腦中設想這棵知識樹,然後找出自己的不足所在,在進行針對性的回顧,對於那寫容易搞混的知識點,要進行梳理並且做到完全的區分,最重要的一點是,我們應該多層次的去分析問題,舉一反三,將重點放在我們的解題思路上.
數學的複習,要秉承一個原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點,有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會給下面的試題留下很多的思考時間,使用各種方法來進行解答.
在數學的複習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績才會提高,數學試題無論如何變化都離不開最為基本的理論,因此在腦海中建立一個數學的知識樹是非常必要的,這可以更快速的幫助自己解題.
複習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先複習一下之前的內容,當然這個時候之前記得筆記就可以用來複習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
怎麼學好初中數學
7樓:海風教育
數學呢,是一個研究數量,結構變化和空間模型等等的含義的一種科學方式,它是物理化學等科目的基礎.而且和我們的日常生活有著很大的關聯,所以說,學好數學對於我們每個人來說都是非常重要的.下面就向大家來介紹一下怎麼學習初中數學吧!
學習數學還必要的,因為數學是從幼兒園開始就接觸的科目,如果說不會數學,那不是太丟人了嗎?以下就是關於怎麼學習初中數學的技巧:
初中數學整式總結
一:日常數學的學習
首先,在平時的學習數學當中,事先需要在課前進行認真的預習.預習的目的呢,就是為了能夠更好的在課堂上吸收老師所講的知識,通過預習之後.我們把握的程度一般就在80%左右了.
隨後在預習當中,不懂的地方就要在課堂上解決.不會的地方需要注重的表明起來,之後會了就多做些例題進行鞏固.
而且具體的預習方式方法如下:把整本書的題目先都做完,同時畫出知識點的含義.這個過程大約在半個小時左右,如果在時間允許的狀況之外,還可以先做一下會寫的練習題,不會的空下,等到明天老師講課的時候再做.
其次呢,在學習數學上是需要和練習題一起結合的,如果說你只在課堂上聽課是沒有用的.因為你雖然說你是聽懂了,但是你做題還是不會的,所以數學注重的是做題,在聽懂的基礎上還是要多做些練習題的,因為練習題多做了.之後你的.
能力才會慢慢的增強.如果說遇到了難題,不懂的題一定要提出來,不懂就問,不能把它嚥下去,誰也不說,否則在考試的時候遇到這些題目,你依然不會.
然後呢,就是複習,寫完作業之後呢,對於當天學的內容需要再看一遍,鞏固一下基礎知識.然後再買些練習冊,或者是在網上搜一些題再做一下.這樣有助於你數學成績的提高.
積極做題
二:考試時的技巧
如果你是想得高分的話,你需要在選擇填空,還有計算題上是絕對不能丟分兒的,所以這需要你謹慎的做題.如果是一開始不知道一道題該怎麼做,但是後來突然明白的那一種,千萬要冷靜,不能瞎寫,要先在草稿紙上寫一遍,最後再放在答題紙上.
以上就是關於怎麼學習初中數學的一些技巧.希望大家是可以理解的.其實學習數學並不難,重要的是要多做題.並且瞭解題型的技巧.
8樓:百度文庫精選
最低0.27元開通文庫會員,檢視完整內
原發布者:fulihuaaa
一、看書習慣這是自學能力的基本功。根據美國和前蘇聯對幾十所名牌大學的調查表明,那些卓有成就的科學家有20%~25%的知識是來自學校,而75%~80%的知識是靠他們離校後通過工作、自學和科研來獲得的。根據心理規律,初中學生已經具備閱讀能力,但由於在小學受直觀模仿習慣的影響,使眾多學生誤把數學課本當作習題集。
所以從初一開始就應重視糾正自己的錯誤學習習慣,樹立數學課本同樣需要閱讀的正確思想,並注意總結如何閱讀數學課本的方法。1.每一節課前都務必養成預習的習慣,努力在預習中發現自己不懂的問題,以便能帶著問題聽講。
課堂上注意老師如何閱讀課文,從中培養自己掌握如何分析定義、定理中的關鍵字、詞、句以及與舊知識的聯絡。2.經常歸納總結學過的知識,培養複習習慣。
剛開始時,可跟著老師總結一節課或一個單元的內容,一個階段後可根據老師提出的複習提綱,自己帶著問題去鑽研課文,最後過渡到由自己歸納,促使自己反覆閱讀課文,及時複習,溫故知新。
二、筆記習慣「好記性不如爛筆頭」。中學數學內容豐富,課堂容量一般比較大,為系統學好數學,從初中時期就必須重視培養做課堂筆記的習慣,課上做筆記還可約束精力分散,提高聽課效率。一般,課堂筆記除記下講課綱目外,主要是記老師講課中交代的關鍵、思路、方法及內容概括。
特別注意隨時記下聽課中的點滴體會及疑問。在「聽」與「記」兩個方面,聽是基礎,切莫只顧「記」而影響「聽」。為了使
9樓:芥末留學
一、該記的記,該背的背,不要以為理解了就行
數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。也許只講對了一半。數學同樣也離不開記憶。
試想一下,小學的加、減、乘、除運算要不是背熟了「乘法九九表」,你能順利地進行運算嗎?儘管你理解了乘法是相同加數的和的運算,但你在做9×9時用九個9去相加得出81就太不合算了。而用「九九八十一」得出就方便多了。
同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像遊戲,它有許多遊戲規則(即數學中的定義、法則、公式和定理等),誰記住了這些遊戲規則,誰就能順利地做遊戲;誰違反了這些遊戲規則,誰就被判錯。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。
比如大家熟悉的「整式乘法三個公式」。如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出傢俱的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的傢俱。同樣,記不住數學的定義、法則、公式、定理就很難解數學問題。
而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、「方程」的思想
數學是研究事物的空間形式和數量關係的,初中最重要的數量關係是等量關係,其次就是不等量關係。最常見的等量關係就是「方程」。比如等速運動中,路程、速度和時間三者之間就有一種等量關係,可以建立一個相關等式:
速度×時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程裡的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟。如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。
初二、初三我們還將學習解一元二次方程、二元一次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、引數方程、極座標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的方法加以解決。物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。
因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜複雜的關係,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、「數形結合」的思想
大千世界,「數」與「形」無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支-代數和幾何,代數是研究「數」的,幾何是研究「形」的。
但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」。在初三,建立平面直角座標系後,研究函式的問題就離不開圖象了。往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。
在今後的數學學習中,要重視「數形結合」的思維訓練,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嚐到甜頭的人慢慢會養成一種「數形結合」的好習慣。
3、「對應」的思想
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴充套件到對應一種形式,對應一種關係,等等。比如我們在計算或化簡中,將公式的左邊,對應a,y對應b,再利用公式的右邊直接得出原式的結果。這就是運用「對應」的思想和方法來解題。
初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角座標平面上的點與一對有序實數之間的一一對應,函式與其圖象之間的對應。「對應」的思想在今後的學習中將會發揮越來越大的作用。
五年級上冊數學組合圖形的面積
漢字表抄 示 平行四邊 形的面積襲 底 高 三角形的面bai積 底 高du 2 梯形的面積 上底 下底 zhi 高 2 字母表示 daos ah s ah 2 a b h 2 以上的 是除號,是乘號。字母表示都是一一對應的 平行四邊形的面積底乘高 三角形面積底乘高除二 梯形面積長加寬的和除二 字母a...
孩子五年級了,英語不好怎麼辦,孩子現在五年級英語很不好怎麼辦
1 提高英語首抄 先要做的是從語音著手 可以用小飛機英語來學英語,上邊有課本上的單詞課文,可以先聽發音再跟讀,在聽寫,效果還是比較明顯的。孩子英語不好有很多種方法來改善,今天我就推薦一種方法,那就是 學習編專程 一方屬面,我們常用的 不多而且語句很短,即使是沒有英文基礎的孩子也不難學會 另一方面,如...
我我五年級,我喜歡女生該怎麼辦,我我五年級,我喜歡一個女生該怎麼辦
好好學習,讓她關注你,一起玩,然後一起討論問題,最後上她 把多餘精力放在學習上,共同進步 喜歡就去追,人要有膽魄。我就問你學習好有什麼用 我了個去,現在的孩子到底是怎麼了,才5年級,就特麼的這樣了?你這是要超越我當年的節奏啊,我當年是4年級的時候就開始了,小孩子啊,你要穩住啊,不能亂來啊,你歲數還小...