1樓:匿名使用者
1.由三角函式兩角差的正弦公式sin(α-β)=sinαcosβ-cosαsinβ可以直接得到答案。
2.兩種思路:
法一、用和差化積公式
sinα-sinβ=sin((α+β)/2 +(α-β)/2) - sin((α+β)/2 -(α-β)/2)
=[sin(α+β)/2 cos(α-β)/2) +cos(α+β)/2 sin(α-β)/2)]-[sin(α+β)/2 cos(α-β)/2) -cos(α+β)/2 sin(α-β)/2)]
=2cos(α+β)/2*sin(α-β)/2
由題意,sin4x=sinx x∈(0,π), 所以sin4x-sinx=0
即2cos(5x/2)sin(3x/2)=0,從而知cos(5x/2)=0或sin(3x/2)=0
所以5x/2=π/2+kπ 3x/2=nπ (k、n∈z)
由於x∈(0,π),所以5x/2∈(0,5π/2),因而k=0,1 ,;3x/2∈(0,3π/2),n=1
因此x=π/5,3π/5或2π/3。
法二:利用正弦函式的影象
由題意,sin4x=sinx x∈(0,π)
所以4x∈(0,4π)
當x=π/2時,sinx=1,sin4x=0,此時sin4x≠sinx,因此x不可能為π/2。
當x∈(0,π/2)時,4x有三種可能:
(1).當4x∈(π/2,π)時,x+4x=π,此時x=π/5;
(2).當4x∈(2π,5π/2)時,4x=x+2π,此時x=2π/3;
(3).當4x∈(5π/2,3π)時,4x=π-x+2π,此時x=3π/5;
當x∈(π/2,π)時,4x有兩種可能:
(1).當4x∈(2π,5π/2)時,4x-2π+x=π,此時x=3π/5;
(2).當4x∈(5π/2,3π)時,4x=x+2π,此時x=2π/3.
綜上,x=π/5,3π/5或2π/3.
2樓:匿名使用者
sin[(2n + 1)x]cosx - cos[(2n + 1)x]sinx
= sin[(2n + 1)x - x]
= sin(2nx + x - x)
= sin(2nx)
公式:sin(x ± y) = sinxcosy ± cosxsiny
sin4x/(2sinx) = 1/2,0 < x < π
sin4x = sinx
sin4x - sinx = 0
2cos[(4x + x)/2]sin[(4x - x)/2] = 0,公式sinx - siny = 2cos[(x + y)/2]sin[(x - y)/2]
cos(5x/2)sin(3x/2) = 0
cos(5x/2) = 0 or sin(3x/2) = 0
5x/2 = π/2 or 3x/2 = 0 or 3x/2 = π,∵cos(π/2) = 0,sin(0) = 0,sin(π) = 0
x = π/5 or x = 0 or x = 2π/3,已知x > 0所以舍掉x = 0
∴x = π/5 or x = 2π/3
3樓:暖眸敏
1左邊=sin 2 nx =sin[(2n+1)x-x]= sin((2n + 1)x) cos x – cos((2n + 1)x) sin x=右邊
(將sin 2 nx 化成兩角差,a按兩角差正弦公式)2∵sin4x/(2sinx) = 1/2,0 < x < πsin4x = sinx
∴4x與x終邊相同或終邊關於y軸對稱
∴4x=x+2kπ,或4x+x=2kπ+π,k∈z∴3x=2kπ,或5x=2kπ+π,k∈z∴x=2kπ/3,或x=2kπ/5+π/5,k∈z∵0 < x<π
∴x = π/5 或 x = 2π/3
4樓:匿名使用者
1. 由積化和差公式可知: sin((2n + 1)x) cos x = 1/2 *( sin((2n+2)x) + sin 2nx) (1)
cos((2n + 1)x) sin x = 1/2 *( sin((2n+2)x) - sin 2nx) (2)
(1)-(2) = sin 2nx
2. sin 4x = 2 sin2x cos 2x = 4 sinx cosx cos 2x
sin 4x/ 2sinx = 2 cos x cos 2x = 1/2
2 cos x ( 2(cos x)^2 - 1) = 1/2
8(cos x)^3 -4 cos x =1
cos x = -1/2
x = (2π)/3
5樓:o江湖小蝦米
1.右邊直接用公式啊,sin((2n+1)x)cosx-cos((2n+1)x)sinx=sin[(2n+1)x-x]=sin2nx=左。
一樓好像看錯題了,sin 4x/ (2sinx)怎麼會等於cos2x呢?
高中三角函式解題技巧
6樓:匿名使用者
三角函式變換的方法與技巧 (1)
角的變換
在三角函式的求值、化簡與證明題中,表示式往往出現較多的相異角,此時可根據角與角之間的和差、倍半、互餘、互補的關係,運用角的變換,溝通條件與結論中角的差異,使問題獲解。常見角的變換方式有:;;;等等。
例1、已知,求證:。
分析:在條件中的角和 與求證結論中的角是有聯絡的,可以考慮配湊角。
解:,,
函式名稱的變換
三角函式變換的目的在於「消除差異,化異為同」。而題目中經常出現不同名的三角函式,這就需要將異名的三角函式化為同名的三角函式。變換的依據是同角三角函式關係式或誘導公式。
如把正(餘)切、正(餘)割化為正、餘弦,或化為正切、餘切、正割、餘割等等。常見的就是切割化弦。
例2 、(2023年上海春季高題)已知 ,試用表示的值。
分析:將已知條件「切化弦」轉化為的等式。
解:由已知;
。常數的變換
在三角函式的、求值、證明中,有時需要將常數轉化為三角函式,例如常數「1」的變換有:,,等等。
例3、(2023年全國高考題)求函式的最小正週期,最大值和最小值。
分析:由所給的式子可聯想到。解:。
所以函式的最小正週期是,最大值為,最小值為。
公式的變形與逆用
在進行三角變換時,我們經常順用公式,但有時也需要逆用公式,以達到化簡的目的。通常順用公式容易,逆用公式困難,因此要有逆用公式的意識。教材中僅給出每一個三角公式的基本形式,如果我們熟悉其它變通形式,常可以開拓解題思路。
如由可以變通為與;由可變形為等等。
例4、求的值。
分析:先看角,都是,再看函式名,需要切割化弦,最後在化簡過程中再看變換。
解:原式(切割化弦)
(逆用二倍角公式)
(常數變換)
(逆用差角公式)
(逆用二倍角公式)。
這裡我們給出了四種三角函式的變換方法與技巧,在處理三角函式問題的過程中若能注意到這些變換的方法與技巧,將有利於我們對三角函式這一章內容的理解。
三角函式變換的方法與技巧(2)
在上一部分我們介紹了部分三角函式的孌換技巧與方法,下面我們再介紹四種變換的方法與技巧:
引入輔助角
可化為,這裡輔助角所在的象限由的符號確定,角的值由確定。
例5、求的最大值與最小值。
分析:求三角函式的最值問題的方法:一是將三角函式化為同名函式,藉助三角函式的有界性求出;二是若不能化為同名,則應考慮引入輔助角。
解: 其中,,
當時,;
當時,。
注:在求三角函式的最值時,經常引入輔助角,然後利用三角函式的有界性求解。
冪的變換
降冪是三角變換時常用的方法,對於次數較高的三角函式式,一般採用降冪處理的方法。常用的降冪公式有:,和
等等。降冪並非絕對,有時也需要升冪,如對於無理式常用升冪化為有理式。
例6、化簡。
分析:從「冪」入手,利用降冪公式。
解:原式
消元法如果所要證明或要求解的式子中不含已知條件中的某些變數,可以使用消元法消去此變數,然後再求解。
例7、求函式的最值。
解:原函式可變形為:,即
,解得:,。
變換結構
在三角變換中,常常對條件、結論的結構施行調整,或重新分組,或移項,或變乘為除,或求差等等。在形式上有時須和差與積互化,分解因式,配方等。
例8、化簡。
分析:本題從「形式」上看,應把分析式化為整式、故分子分母必有公因式,只需把分子分母化成積的形式。
解:所以。
九、思路變化
對於一道題,思路不同,方法出隨之不同。通過分析,比較,才能選出思路最為簡例9、求函式 的最大值。
解:由於,則為點與點()連線的斜率。則斜率最為當連線與半單位圓相切時,如圖所示:
此時, 。
捷的方法。
7樓:匿名使用者
1.化簡三角函式
方法:反覆利用倍角半形公式,利用同角三角函式的關係。
2.求最值或單調區間。
方法:將x的取值化為相應的值。
即將x的範圍化為ax+b的範圍。
再作正弦函式標準圖,橫軸為ax+b,在圖上找最值或單調區間。
3.若要求三角形面積一般用s=0.5ab*sinc若要求角度一般用餘弦定理
8樓:強哥數學
分為兩部分,一是週期,二是公式的靈活應用
高中數學三角函式求解
9樓:匿名使用者
1、根2倍角公式,得到:
cosa=2[cos(a/2)]^2-1
代入引數得到
cosa=2*(b+c)/(2c)-1
=b/c
再根據餘弦定理,得到:
a^2=b^2+c^2-2bc*cosa
=b^2+c^2-2bc*b/c
=c^2-b^2
因此,這個三角形的三邊滿足勾股定理,該三角形為直角三角形,且直角為c角,斜邊為c邊。
2、此時,可以先求出cosa
因為tana=a/b
=(8/3)/2
=4/3
根據三角關係,得到
cosa=1/√[1+(tana)^2]
=1/√[1+(4/3)^2]
=3/5
根據倍角公式
cos(a/2)=√[cosa+1)/2]=√(4/5)
=2/√5
於是,根據題意,有
cos(a/2)=b/am
得到am=b/cos(a/2)
=2/(2/√5)=√5
高中數學三角函式求解 急
10樓:edwina翟
以下為詳細解答,希望對你有幫助
第一題直接代入三角函式公式
cos²x+sin²x=1
第二題tan(-39π/4)=tan(-36π/4-3π/4)=-tan(π+3π/4)
有三角函式公式得,tan(π+x)=tanx所以tan(π+3π/4)=tan3π/4=-1所以tan(-39π/4)=1
這兩道題主要是考察三角函式公式的運用,主要是一些轉換,稍微變通就好了
高中三角函式怎麼學
掌握一些基本知識 概念。記住常見和差化積公式 倍角公式 萬能公式,在此基礎上多做題,掌握一些做題化簡的基本技巧,合理利用公式,有時候需要幾種情況討論,不要漏掉。在熟練這些公式基礎上自己推到積化和差共識,並儘量記住,以便快速做題。這一章只有公式和應用化簡,不太難。首先要理解幾何概念,然後要背熟各種函式...
高中三角函式的物理意義
正交分解時能用到 在各個方向上的受力平衡 多思考吧,這是一個體系,需要體會 是個輔助的物理模型,以平面的角度和力的大小作正交分解,從而計算力的大小和方向 擺動的抽象模型。回答完畢.三角函式在受力分析中起 輔助計算 的作用 計算或者處理力的時候經常用到。重要的還是自己去體會。在使用正交分解時,用來計算...
高中三角函式的符號怎麼判定
直角座標系,以x正方向維起始邊,逆時針方向旋轉為正方向,旋轉過的角度為角的大小。您只要記住兩個 cos在一四象限內為正,二三象限內為負 sin在一二象限內為正,三四象限內為負。然後tan cot等根據公式自己推一下,以後多推幾次慢慢就熟悉了忘都忘不了!首先要知道三角函式定義 在角的終邊上任取一點座標...