矩陣化成行最簡形只能做初等行變換嗎

2021-03-03 21:25:43 字數 2642 閱讀 2234

1樓:匿名使用者

對的,親,矩陣化成行最簡形時,只能做初等行變換。

一般我們在求等價矩陣,求秩時,行變換、列變換都可以,

但在解線性方程組、化成階梯形、最簡形及求極大無關組時只能做初等行變換。

求矩陣初等變換化為行最簡行形的技巧t.t

2樓:匿名使用者

1. 一般是從左到右,一列一列處理

2. 儘量避免分數的運算

具體操作:

1. 看本列中非零行的首非零元

若有數a是其餘數的公因子, 則用這個數把第本列其餘的數消成零.

2. 否則, 化出一個公因子

給你個例子看看吧.

例:2 -1 -1 1 2

1 1 -2 1 4

4 -6 2 -2 4

3 6 -9 7 9

--a21=1 是第1列中數的公因子, 用它將其餘數化為0 (*)

r1-2r2, r3-4r2, r4-3r2 得

0 -3 3 -1 -6

1 1 -2 1 4

0 -10 10 -6 -12

0 3 -3 4 -3

--第1列處理完畢

--第2列中非零行的首非零元是:a12=-3,a32=10,a42=3

-- 沒有公因子, 用r3+3r4w化出一個公因子

-- 但若你不怕分數運算, 哪就可以這樣:

-- r1*(-1/3),r2-r1,r3+10r1,r4-3r1

-- 這樣會很辛苦的 ^_^

r1+r4,r3+3r4 (**)

0 0 0 3 -9

1 1 -2 1 4

0 -1 1 6 -21

0 3 -3 4 -3

--用a32把第2列中其餘數化成0

--順便把a14(下次要處理第4列)化成1

r2+r3, r4+3r3, r1*(1/3)

0 0 0 1 -3

1 0 -1 7 -17

0 -1 1 6 -21

0 0 0 22 -66

--用a14=1將第4列其餘數化為0

r2-7r1, r3-6r1, r4-22r1

0 0 0 1 -3

1 0 -1 0 4

0 -1 1 0 -3

0 0 0 0 0

--首非零元化為1

r3*(-1), 交換一下行即得

1 0 -1 0 4

0 1 -1 0 3

0 0 0 1 -3

0 0 0 0 0

注(*): 也可以用a11=2 化a31=4 為0

關鍵是要看這樣處理有什麼好處

若能在化a31為0的前提下, a32化成了1, 那就很美妙了.

注(**): r1+r4 就是利用了1,4行資料的特點,先處理了a12.

總之, 要注意觀察元素的特殊性靈活處理.

3樓:匿名使用者

用初等變換化矩bai陣為行最簡形,主要是du按照次

zhi序進行,

先化為行階梯形,dao再內化為行最簡形,

在這樣按部就班的容次序中,也有靈活性,可以說是技巧吧:

比如,首先使第一行第一列的元素為1,用這個1來把1下面的元素變成零則比較簡單;

同理,之後使第某行第某列的元素為1,用這個1來把1下面的元素變成零則比較簡單;

還有,先把分數變成整數,避免分數運算;

還有,觀察矩陣中的元素,可能是數或者是字母之間的關係,進行一些技巧性運算,等等,

總之,在依照次序進行的前提下,應該不失靈活性,而不是絕對地按照次序一味地死算。

矩陣簡化成行最簡形矩陣的技巧

4樓:軟工大師

矩陣簡化成復行最簡形矩制陣的技巧:

用初等變換化矩陣為行最bai簡形,主要是du按照次序進zhi行,先化為行階梯形,再化

dao為行最簡形。

其中化成下三角的技巧主要就是「從左至右,從下至上」,找看起來最容易一整行都化為0或者儘可能都化為0的一行(一般是最下面一行),將其放至最後一行,然後通過初等變換將這一行的元素從左至右依次設法都變成0直至無法化簡。

5樓:使用者名稱用

化成下三角的技巧主要就是「從左至右,從下至上」,找看起來最容易版一整行都化為0或者儘可能都化權為0的一行(一般是最下面一行),將其放至最後一行,然後通過初等變換將這一行的元素從左至右依次設法都變成0直至無法再化為0為止。

接著從這一行的上一行開始依次從左至右化為0,不停重複直至處理完第一行。最後要檢查首非零元是否從最後一行開始依次往左移,如不是,要換行調整到是為止。例:

2341

0123

0001

這樣就算完成了第一步。(有個小訣竅,題目中一般要做初等行變換都是要用第一行的-k倍去消去其他行的第一個元素,接著再進一步化簡,屢試不爽哦~)

接著保證首非零元都是1,並且保證首非零元所在「列」都為0即可,本例可處理為:

1 0 -1 0

0 1 2 0

0 0 0 1

這樣就完成咯~希望對lz有幫助

行最簡形矩陣與最簡形矩陣區別,最簡形矩陣與標準形矩陣的區別是什麼

行最簡形矩bai陣定義 在矩陣中可畫出一 du條階梯線,線的下方zhi全為0,每個臺階只dao有一行,臺階數即回是非零答行的行數,階梯線的豎線 每段豎線的長度為一行 後面的第一個元素為非零元,也就是非零行的第一個非零元,則稱該矩陣為行階梯矩陣。若非零行的第一個非零元為都為1,且這些非零元所在的列的其...

線性代數矩陣經過初等變換得到行最簡矩陣唯一嗎

不唯一,下面舉一個例子幫助理解d到f可以說明d行變換可以化為無數個最簡矩陣 a為最簡矩陣經過如下行變換變為f,f為最簡矩陣m n k可以為任意實數 不唯一,但矩陣的秩,是不變的。為什麼說一個矩陣經過初等變換後的的行最簡形矩陣是唯一的呢?行最簡形bai矩陣不 是唯一,最du簡型才是唯一的zhi。另外,...

行階梯形矩陣和行最簡形矩陣怎麼得出來的方法是什麼額

定義 一bai個行階梯形矩陣du若滿足 d a zhi 1 每個非零行dao的第一個非專 零元素為1 d a 屬 2 每個非零行的第一個非零元素所在列的其他元素全為零,則稱之為行最簡形矩陣.d a定義 如果一個矩陣的左上角為單位矩陣,其他位置的元素都為零,則稱這個矩陣為標準形矩陣.d a 區別看定義...