以下不是行階梯形矩陣的是,什麼叫行階梯型矩陣

2021-03-03 21:25:43 字數 3919 閱讀 4790

1樓:匿名使用者

d。如果d的2行和3行對換,那麼d才是行階梯形。

什麼叫行階梯型矩陣

2樓:匿名使用者

定義 一個行階梯形矩陣若滿足 (1) 每個非零行的第一個非零元素為1; (2) 每個非零行的第一個非零元素所在列的其他元素全為零,則稱之為行最簡形矩陣.定義 如果一個矩陣的左上角為單位矩陣,其他位置的元素都為零,則稱這個矩陣為標準形矩陣.( 區別看定義就行了) 還有還有最簡形矩陣不一定是階梯形矩陣,而階梯形矩陣一定是最簡形矩陣

行階梯形矩陣定義是什麼,希望您舉例說明一下?

3樓:匿名使用者

如果一個矩陣滿足:

(1)所有非零行(矩陣的行至少有一個非零元素)在所有全零行的上面。即全零行都在矩陣的底部。

(2)非零行的首項(即最左邊的首個非零元素),也稱作主元, 嚴格地比上面行的首項更靠右。

(3)首項所在列,在該首項下面的元素都是零;

例如,下面4×5矩陣是行階梯形矩陣:

1 2 3 4 5

0 0 2 -1 3

0 0 0 1 2

0 0 0 0 0

什麼是階梯形矩陣?

4樓:娛樂大潮咖

階梯型矩陣

是矩陣的一種型別。他的基本特徵是如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。

1、階梯型矩陣必須滿足的兩個條件:

(1)如果它既有零行,又有非零行,則零行在下,非零行在上。

(2)如果它有非零行,則每個非零行的第一個非零元素所在列號自上而下嚴格單調上升。

2、階梯型矩陣的基本特徵:

如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。

3、階梯型矩陣的畫法:

(1)畫法一:

(2)畫法二:

(3)畫法三:

擴充套件資料:

行最簡形矩陣:

在矩陣中可畫出一條階梯線,線的下方全為0,每個臺階只有一行,臺階數即是非零行的行數,階梯線的豎線(每段豎線的長度為一行)後面的第一個元素為非零元,也就是非零行的第一個非零元,則稱該矩陣為行階梯矩陣。若非零行的第一個非零元都為1,且這個非零元所在的列的其他元素都為0,則稱該矩陣為行最簡形矩陣。

1、行最簡形矩陣滿足兩條件:

(1)它是行簡化階梯形矩陣;

(2)非零首元都為1。

2、行最簡形矩陣的性質:

(1)行最簡形矩陣是由方程組唯一確定的,行階梯形矩陣的行數也是由方程組唯一確定的。

(2)行最簡形矩陣再經過初等列變換,可化成標準形。

(3)行階梯形矩陣且稱為行最簡形矩陣,即非零行的第一個非零元為1,且這些非零元所在的列的其他元素都是零。

5樓:慕容清新

一個矩陣成為階梯型矩陣,需滿足兩個條件: (1)如果它既有零行,又有非零行,則零行在下,非零行在上。 (2)如果它有非零行,則每個非零行的第一個非零元素所在列號自上而下嚴格單調上升。

階梯型矩陣的基本特徵: 如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。特點(每個階梯只有一行;元素不為0的行(非零行)的第一個非零元素的列標隨著行標增大而嚴格增大(列標一定不小於行標);元素全為0的行(如果有的話)必在矩陣的最下面幾行)

任意矩陣可經過有限次初等行變換化為階梯型矩陣

什麼是階梯形矩陣。其特點有什麼?

6樓:匿名使用者

若矩陣a滿足兩條件:(1)零行(元素全為0的行)在最下方;(2)非零首元(即非零行的第一個不為零的元素)的列標號隨行標號的增加而嚴格遞增,則稱此矩陣a為階梯形矩陣。

2 0 2 1

0 5 2 -2

0 0 3 2

0 0 0 0

行簡化階梯形矩陣

若矩陣a滿足兩條件:(1)它是階梯形矩陣;(2)非零首元所在的列除了非零首元外,其餘元素全為0,則稱此矩陣a為行簡化階梯形矩陣。

2 0 0 1

0 5 0 -2

0 0 3 2

0 0 0 0

加強的行簡化階梯形矩陣

若矩陣滿足兩條件:(1)它是行簡化階梯形矩陣;(2)非零首元都為1,則稱此矩陣a為加強的行簡化階梯形矩陣。

1 0 0 1

0 1 0 -2

0 0 1 2

0 0 0 0

一個矩陣的行階梯形矩陣是唯一的嗎 5

7樓:落葉無痕

不是,可以差一個倍數,但是基本結構一樣。例如

2i和i,i為單位矩陣,行列變換都可以變成i,也可以不變就是i和2i。

為什麼矩陣的秩等於其行階梯行矩陣非零行的行數?詳細一點哈?謝了。

8樓:demon陌

行階梯矩陣非零行的首非零元(個數=非零行數)所在的列是線性無關的, 且其餘向量可由它們線性表示。

所以它們是a的列向量組的一個極大無關組。

所以a的列秩 = 非零行的行數

所以a的秩 = 非零行的行數

舉例:比如 a = (a1,a2,a3,a4) 經過初等行變換化成1 2 3 4

0 0 1 5

0 0 0 0

那麼 a1,a3 是線性無關的 [ 即行階梯矩陣非零行的首非零元所在的列是線性無關的]

這個線性無關組含向量的個數是梯矩陣的非零行數再把梯矩陣化成行簡化梯矩陣

1 2 0 -11

0 0 1 5

0 0 0 0

就可能看出 a2 = 2a1, a4 = -11a1 + 5a3即 a2,a4 可由a1,a3 線性表示

所以 a1,a3 是 a1,a2,a3,a4 的極大無關組即 a 的列秩 = 2 (非零行數)

所以 a 的秩 = 2 (非零行數)

9樓:普瑞斯托領主

沒這麼麻煩。首先行階梯矩陣、最簡行階梯矩陣與原矩陣這三種矩陣都是

等秩的。而行階梯矩陣必可以化成最簡行階梯矩陣,又因為最簡行階梯矩陣非零行的列向量是線性無關的,因此它們就構成了最簡行階梯矩陣的一個最大無關組,又因為最簡行階梯矩陣與原矩陣等秩,所以矩陣的秩就等於其行階梯矩陣非零行的個數了。

關於等秩的證明,將矩陣方程寫成代數方程的形式,應該就比較容易證明了。

10樓:哈哈誒丫丫

當矩陣沒有非零行時,由行階梯形性質可知,方程組有唯一解,即此時d≠0。有非零行就選出沒有非零行的子矩陣 繼續利用該性質。

如圖,這個算不算行階梯形矩陣

11樓:死小白丶

如果是括號的話就不算,那是行列式。矩陣是[這個]

關於 對於行階梯形矩陣 它的秩就等於非零行的行數

12樓:一朵小包菜

樓主發的這個矩陣的秩確實是3,回答的也都沒問題。如果是這個矩陣呢?

它是行階梯型矩陣吧,那它的秩為3嗎?

13樓:匿名使用者

第一,二,四列組成的一個三階子式,這是個對角行列式,主對角線上都是1,值就是1嘛,不為0

14樓:誰將柔情深重

秩就是化成階梯矩陣後非零行的個數。互換列,即:第三列和第四列互換,得1 0 0 0

0 1 0 1

0 0 1 0

取矩陣任意三列組成一個三階子式。取原矩陣1、2、4列組成一個三階矩陣。由上圖可看出,左邊三列是單位矩陣=1。該三階子式=1。當然還有其他三階子式。

這個是行階梯形矩陣嗎,行階梯形矩陣定義是什麼,希望您舉例說明一下?

根據上面定義可知你寫的矩陣是行階梯形矩陣 行階梯形矩陣定義是什麼,希望您舉例說明一下?如果一個矩陣滿足 1 所有非零行 矩陣的行至少有一個非零元素 在所有全零行的上面。即全零行都在矩陣的底部。2 非零行的首項 即最左邊的首個非零元素 也稱作主元,嚴格地比上面行的首項更靠右。3 首項所在列,在該首項下...

線性代數求行階梯形矩陣,線性代數求行階梯形矩陣及行最簡形矩陣

a r2 r1 r4 r1 2 1 2 2 1 5 0 3 4 3 2 0 3 4 3 1 0 3 4 3 8 r3 r2 r4 r2 1 2 2 1 5 0 3 4 3 2 0 0 0 0 1 0 0 0 0 6 r3 1 r4 r3 6 r2 r3 2 r1 r3 5 這兩步不做也已經是行內階梯...

行階梯形矩陣和行最簡形矩陣怎麼得出來的方法是什麼額

定義 一bai個行階梯形矩陣du若滿足 d a zhi 1 每個非零行dao的第一個非專 零元素為1 d a 屬 2 每個非零行的第一個非零元素所在列的其他元素全為零,則稱之為行最簡形矩陣.d a定義 如果一個矩陣的左上角為單位矩陣,其他位置的元素都為零,則稱這個矩陣為標準形矩陣.d a 區別看定義...