一階導數等於零一定就是極值嗎,一階導數為零的點不一定是極值點,但是如果該點二階導數不為零則一定

2021-03-03 21:59:04 字數 2716 閱讀 3427

1樓:魚躍紅日

一階導數等於零,不一定是極值。有些函式本身沒有極值,如一條平行於x軸的直線,根本沒有極大極小的問題,所以一階導數為0是極指點的必要條件,而非充分條件。

2樓:匿名使用者

不一定,如y=x^3在x=0處

一階導數為零的點不一定是極值點,但是如果該點二階導數不為零則一定

3樓:匿名使用者

如果x0點處的二階導數不為0

設二階導數為正

那麼說明f(x)的一階導數在x0點附近是增函式,那麼當xx0的時候,f'(x)>f'(x0)=0,f(x)是增函式所以f(x)在x0點附近是左減右增,x0點是極小值點。

設二階導數為負

那麼說明f(x)的一階導數在x0點附近是減函式,那麼當xf'(x0)=0,f(x)是增函式當x>x0的時候,f'(x)

所以上面是證明說明,一階導數為0,而二階導數不為0的點,一定是極值點。

4樓:麴令刑春雪

(1)y=x^3,在0點1階導數、2階導數都=0,但0不是它的極值點(顯然在0的任意鄰域內都不是最大/最小值)(2)二階導不為零說明一階導在該點附近的符號發生改變,所以一定是極值點

(二階導》0說明一階導在該點附近始終單增,而一階導在該點又=0,所以在該點左邊一定一階導<0,在該點右邊一定一階導》0,那麼顯然就是極值點了)

一階導數和二階導數都為零的點是極值點嗎

5樓:羊歡草長

不一定,比如y=x^3,一階導數和二階導數在零點的值都為0,但原函式在x=0出沒有取得極值。

有可能是極值點 如y=x^4,在零點取得極值點,而一階二階導數在零點都為0

6樓:匿名使用者

解答:不一定是極值點

例如:y=x^3,y導=3x^2=0,則:x=0;y的二階導數=6x=0,則:x=0

但x=0不是極值點

極值點導數為0,導數為0的不一定是極值點是什麼意思?

7樓:demon陌

對於可導函式(影象上各點切線斜率存在),影象是光滑的,極值點切線必是水平的,即極值點切線斜率為0,極值點導數為0。

在導數為0的點的兩側若函式單調性一致,則此點不是極值點,如y=x^3在x=0處導數為0,但在原點兩側函式都是單調遞增,x=0不是極值點。

若f(a)是函式f(x)的極大值或極小值,則a為函式f(x)的極值點,極大值點與極小值點統稱為極值點。極值點是函式影象的某段子區間內上極大值或者極小值點的橫座標。極值點出現在函式的駐點(導數為0的點)或不可導點處(導函式不存在,也可以取得極值,此時駐點不存在)。

8樓:關鍵他是我孫子

因為極值點的判斷需要滿足兩個條件:

1、極值點不但導數為0

2、極值點的左右的導數的符號一定相反

所以對於極值點而言,極值點的導數不一定是0,可能是不可導點比方說f(x)=|x|,這個函式,x=0是極小值點,但是這個函式在x=0點處不可導,極小值點處導數不是0

如果某點的導數為0,但該點的左右導數符號相同,那麼該點不是極值點,可能的情況如下:

一種是像 y=x平方,這個函式在x=0的樣子,這種是極值點另一種是y=x立方,這個函式在x=0的樣子,這種叫做拐點

9樓:吉祿學閣

其實就是充分條件和必要條件問題。

本題是充分條件,從條件到結論正向推理可以,但反過來推不正確。

10樓:boy我最靚

極值點的導數是0,但是導數為零的不一定是極值點,意思就是導數為0的,有可能是極值點,有可能不是極值點,要根據具體的問題判斷。

11樓:唐衛公

極值點 -> 導數為0

從左到右一定成立,從右到左不一定(如y = x^3, x = 0時,導數y' = 3x^2 = 0, 但(0,0)不是極值點)

函式在某區間上恆單調則在該區間上無極值點。 極值點肯定是出現在先增後減或先減後增時。

多找些例子,並仔細對比影象就容易了。

12樓:匿名使用者

就像導數魏w型曲線 兩邊無限 但導數為零時只有中間三個極值 並不是最值

一階導等於零,二階導等於零,三階導不等於零那麼這個點是極值點嗎(求詳細證明)

13樓:

不是極值點。可用泰勒來證明。

在x0處展開為:

f(x)=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)2/2!+f"'(x0)(x-x0)3/3!+.....

因為f'(x0)=f"(x0)=0, 故得:

f(x)-f(x0)=f"'(x0)(x-x0)3/3!+......

考慮x在x0處左右鄰域,f(x)-f(x0)的符號:

不妨設f"'(x0)>0, 則在x0左鄰域,f"'(x0)(x-x0)3/3!<0; 在右鄰域,f"'(x0)(x-x0)3/3!>0, 因此在

在x0左右鄰域,f(x)-f(x0)的符號由負變正,故x0不是極值點。

同樣若f"'(x0)<0, 也同樣得x0不是極值點。

另外,若三階導等於0,但四階導不等於0,則x0是極值點。

極值點的一階導數一定等於0嗎,極值點是一階導數為0的點和一階導數不存在的點,還是使原來的函式不存在的點

當然不是啦。極值點也可能是不可導點,沒有一階導數。當然,如果極值點處有一階導數,那麼一階導數必然是0 極值點是一階導數為0 的點和一階導數不存在的點,還是使原來的函式不存在的點?極值點是一階導數為0可能是極值點 導數不存在也可能是,但也可能不是 原來的函式不存在的點這個絕對不是 若f a 0,則x ...

拐點就是一階導數的極值點,函式的拐點是一階導數的極值點嗎

不是啊。bai。從影象上看,拐點 du時函zhi數影象凹 凸的分dao界點 可以用二回階導數確定 答 拐點在數學上指改變曲線向上或向下方向的點,直觀地說拐點是使切線穿越曲線的點 即曲線的凹凸分界點 若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號 由正變負或由負變正 不懂請追問 希望能幫到...

f x 一階導數為常數說明什麼,也就是二階導數永遠為零,著說明什麼 有什麼意義

二階倒數的意義如下 曲線斜率變化的速度 函式的凹凸性 判斷極大值極小值 而上面三個用途都是通過f x 0還是 0來判斷的,所以對於現在所學範圍內,二階導數等於零沒有什麼實際意義。一階導數為常數說明這是一個一次的函式。如果一階導數大於零,則說明這個函式是單調遞增的,小於零就說明是單調遞減的。說明這是一...