1樓:demon陌
^x=根2*tant,t=arctan(x/根2),dx=根2*(sect)^2 dt
s根號下(2-x^2)dx
=s根2*sect*根2*(sect)^2 dt=2s(sect)^3dt
=sect*tant+ln|sect+tant|+c=x/根號下(2-x^2)+ln|1/根號下(1+1/2*x^2)+x/根2|+c
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
2樓:匿名使用者
令x=根號
2 *sint
即根號(2-x^2)=根號2 *cost
dx=根號2 *cost dt
那麼原積分
=∫ 根號2 *cost dx
=∫ (根號2 *cost)^2 dt
=∫ 2 (cost)^2 dt
=∫ cos2t +1 dt
=1/2 *sin2t +t +c
=sint *cost +t +c
=x/根號2 *根號(2-x^2)/根號2 +arcsin(x /根號2) +c
=x/2 *根號(2-x^2) +arcsin(x /根號2) +c,c為常數
定積分代入上下限即可
3樓:匿名使用者
可以用分部積分法,比換元法簡單
計算不定積分:根號下(2-x^2)dx
4樓:demon陌
|x=根2*tant,t=arctan(x/根2),dx=根2*(sect)^2 dt
s根號下(2-x^2)dx
=s根2*sect*根2*(sect)^2 dt=2s(sect)^3dt
=sect*tant+ln|sect+tant|+c=x/根號下(2-x^2)+ln|1/根號下(1+1/2*x^2)+x/根2|+c
函式的和的不定積
分等於各個函式的不定積分的和,求不定積分時,被積函式中的常數因子可以提到積分號外面來。
根號下a^2-x^2不定積分中的步驟詳解 5
5樓:匿名使用者
^^^i = ∫√(a^2-x^2)dx
= x√(a^2-x^2) - ∫[x(-x)/√(a^2-x^2)]dx
= x√(a^2-x^2) - ∫[(a^2-x^2-a^2)/√(a^2-x^2)]dx
= x√(a^2-x^2) - i + ∫[a^2/√(a^2-x^2)]dx
2i = x√(a^2-x^2) + a^2∫d(x/a)/√[1-(x/a)^2]
i = (x/2)√(a^2-x^2) + (a^2/2)arcsin(x/a) + c
6樓:匿名使用者
^^^∫sqrt(a^2+x^2)dx=xsqrt(a^2+x^2)-∫x^2dx/sqrt(a^2+x^2)
=xsqrt(a^2+x^2)-∫sqrt(a^2+x^2)dx+a^2∫dx/sqrt(a^2+x^2)
∫sqrt(a^2+x^2)dx=(1/2)[xsqrt(a^2+x^2)+a^2∫dx/sqrt(a^2+x^2)]
=(1/2)[xsqrt(a^2+x^2)+a^2ln(x+sqrt(a^2+x^2))]
7樓:路人__黎
cos²t=(1 + cos2t)/2
∫a²cos²tdt=∫(a²/2)(1 + cos2t)dt=(a²/2)∫(1 + cos2t)dt=(a²/2)[∫1 dt + ∫cos2t dt]=(a²/2)[∫1 dt + ∫(1/2)cos2t d(2t)]=(a²/2)[∫1 dt + (1/2)∫cos2t d(2t)]=(a²/2)[t + (1/2)sin2t]=(a²/2)t + (a²/4)sin2t + c
8樓:小茗姐姐
方法如下圖所示,
請認真檢視,
祝學習愉快,
學業進步!
滿意請釆納!
根號下a^2–x^2的不定積分怎麼求?
9樓:匿名使用者
求這個不定積分的困難在於有根式,但我們可以利用三角公式來化去根式。求解過程如下圖所示:
根號下a^2+x^2的不定積分怎麼求
10樓:匿名使用者
^^解:∫√(a^2-x^2)dx
設x=asint
則dx=dasint=acostdt
a^2-x^2
=a^2-a^2sint^2
=a^2cost^2
∫√(a^2-x^2)dx
=∫acost*acostdt
=a^2∫cost^2dt
=a^2∫(cos2t+1)/2dt
=a^2/4∫(cos2t+1)d2t
=a^2/4*(sin2t+2t)
將x=asint代回
∫√(a^2-x^2)dx=x√(a^2-x^2)/2+a^2*arcsin(x/a)/2+c
擴充套件資料:積分公式
注:以下的c都是指任意積分常數。
全體原函式之間只差任意常數c
11樓:牽奕聲梅妍
^^^∫x^2/√(a^2+x^2)dx
=∫(x^2+a^2-a^2)/√(a^2+x^2)dx=∫√(x^2+a^2)dx-a^2∫dx/√(a^2+x^2)=x√(x^2+a^2)-
∫x√d(x^2+a^2)dx-a^2arsh(x/a)=x√(x^2+a^2)-
∫x^2dx/√(x^2+a^2)-a^2(ln(x/a+√(1+(x/a)^2)),
2∫x^2dx/√(x^2+a^2)=
x√(x^2+a^2)-a^2,
∴∫x^2dx/√(a^2+x^2)=
x√(a^2+x^2)/2-a^2ln[x+√(a^2+x^2)]/2+c
這裡用到分部積分和反雙曲正弦函式arshx。
12樓:享受孤獨
有分部積分做的確比較簡單
13樓:來安大記得q我
用分部積分法,
i=∫√x^2+a^2dx=x√x^2+a^2-∫x·x/√x^2+a^2dx
14樓:匿名使用者
答案錯了吧 ln前應該是a^2/2吧?
求定積分0 a x 2根號下a 2 x
求定bai積分 0,a x a x dx 解 原式 du 0,a ax 1 x a dx 令x a sint,則dx acostdt,x 0時,zhit 0 x a時,t 2.故原式 0,dao 2 a sin tcos tdt 0,2 a 4 sin 2t dt 0,2 a 8 sin 2t d ...
1x2上限根號3下限1求定積分
因為 arctanx 的導數是bai1 1 x 2 所以 dx 1 x 2 arctanx,又其下 duzhi 上限為 1,3 0.5 根據定積分基dao本規則,專可得該定積分 arctan 3 0.5 arctan 1 屬 3 4 7 12 arctan3 arctan1,這個是基本的積分計算公式...
求dx1根號x的定積分,求不定積分11根號下xdx
我也是大一的,你說的應該是 dx 1 根號x 吧,你令根號x t,然後用分部積分法做 求不定積分1 1 根號下x dx 令 2113x t,則x t2,dx 2tdt故原5261式4102 2 1653t 1 t dt 2 t 1 內1 t 1 dt 2 1 1 t 1 容dt 2t 2ln t 1...