1樓:我是一個麻瓜啊
π/π是有bai理數。
解答過程如下du
:(1)無理數,
zhi也dao稱為無限不迴圈專
小數,不能寫作兩整數之比。屬若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。
(1)雖然π是無理數,但是π/π卻等於1。1不是無限不迴圈的小數。1可以化成兩個整數的比,不滿足無理數的定義,所以1是一個有理數。
2樓:楊建朝
=1,有理數
請及時採納正確答案,下次還可能幫您,您採納正確答案,您也可以得到財富值,謝謝。
3樓:匿名使用者
數學bai家們已經證明了π是無限不迴圈du小數zhi,但是證明的dao方法比較複雜,一般內
都要用到高等數學容,初等解法是比較難讓人懂的,不過證明的方法很多。一般的證明思路就是先假設π是個有理數,那麼可以把π表示成m/n的形式,然後退出矛盾,進而說明π是無理數。π是無理數是2023年由德國數學家蘭伯特首先證明的。
後來,德國數學家林德曼證明了π是超越數,也就是說它不是任何一個整係數整式方程的根。
4樓:匿名使用者
π/π=1
「π」是不是有理數?
5樓:阿明
π不是有理數。
因為,根據有理數的定義:
有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。
而π=3.1415926...是無限不迴圈小數,不在有理數的範圍。
6樓:匿名使用者
兀不是有理
數,因為兀=3.1415926……它是無限不迴圈小數。
然而有理數的概念是:有理數分為正有理數,負有理數,0。
有理數都可以化為小數,其中整數可以看作小數點後面是零的小數,只要是無限迴圈小數的都叫有理數。如:3.12121212121212……
7樓:叫那個不知道
π不是有理數。有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角座標系、函式、統計等數學內容以及相關學科知識的基礎。
數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。
有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。
擴充套件資料
π是個無理數,即不可表達成兩個整數之比,是由瑞士科學家約翰·海因裡希·蘭伯特於2023年證明的。 2023年,林德曼(ferdinand von lindemann)更證明了π是超越數,即π不可能是任何整係數多項式的根。
圓周率的超越性否定了化圓為方這古老尺規作圖問題的可能性,因所有尺規作圖只能得出代數數,而超越數不是代數數。
2023年,國際數學協會正式宣佈,將每年的3月14日設為國際數學節,**則是中國古代數學家祖沖之的圓周率。
國際圓周率日可以追溯至2023年3月14日,舊金山科學博物館的物理學家larry shaw,他組織博物館的員工和參與者圍繞博物館紀念碑做3又1/7圈(22/7,π的近似值之一)的圓周運動,並一起吃水果派。之後,舊金山科學博物館繼承了這個傳統,在每年的這一天都舉辦慶祝活動。
2023年,美國眾議院正式通過一項無約束力決議,將每年的3月14日設定為「圓周率日」。決議認為,「鑑於數學和自然科學是教育當中有趣而不可或缺的一部分,而學習有關π的知識是一教孩子幾何、吸引他們學習自然科學和數學的迷人方式……π約等於3.14,因此3月14日是紀念圓周率日最合適的日子。」
8樓:端木半青革越
不是,π是無限不迴圈小數,是無理數,1/3是無限迴圈小數,是有理數。這主要是無限迴圈和無限不迴圈的區別。迴圈是有理的,可推導;不迴圈是無理的,不可推導的
9樓:建昆綸殳順
從小數講,無限不迴圈小數是無理數。所以π/7是無理數;
從分數角度講,任何一個有理數都能化為既約分數﹙分子和分母只有公約數1也叫最簡分數﹚,1/3本身就是一個最簡分數,所以它是有理數。π本身是無理數,它與7的商也是無限不迴圈小數,所以它是無理數。
10樓:老登高
π不是有理數,不能表達成分數形式。
π是無理數,屬於無限不迴圈小數。
而且π還是超越數,也就是說不屬於代數數,是不滿足任一個整係數代數方程anxn+an-1xn-1+…+a1x+a0=0( an≠0,n≥1 )的數。
要知道所有超越數都是無理數,但大部分無理數都不是超越數。
11樓:班如琴飛星
π限迴圈數所
理數哦師講
π是有理數麼
12樓:小霞
π不是有理數,π是無理數。
π=3.1415926535897932384626..........;
是一個無限不迴圈小數,所以是無理數。
13樓:匿名使用者
^不是.有多種證明方法,下面是其中一種:
假設∏是有理數,則∏=a/b,(a,b為自然數)
令f(x)=(x^n)[(a-bx)^n]/(n!)
若0 0 0 以上兩式相乘得: 0 當n充分大時,,在[0,∏]區間上的積分有 0<∫f(x)sinxdx <[∏^(n+1)](a^n)/(n!)<1 …………(1) 又令:f(x)=f(x)-f"(x)+[f(x)]^(4)-…+[(-1)^n][f(x)]^(2n),(表示偶數階導數) 由於n!f(x)是x的整係數多項式,且各項的次數都不小於n,故f(x)及其各階導數在x=0點處的值也都是整數,因此,f(x)和f(∏)也都是整數。 又因為d[f'(x)sinx-f(x)conx]/dx =f"(x)sinx+f'(x)cosx-f'(x)cosx+f(x)sinx =f"(x)sinx+f(x)sinx =f(x)sinx 所以有: ∫f(x)sinxdx=[f'(x)sinx-f(x)cosx],(此處上限為∏,下限為0) =f(∏)+f(0) 上式表示∫f(x)sinxdx在[0,∏]區間上的積分為整數,這與(1)式矛盾。所以∏不是有理數,又它是實數,故∏是無理數。 14樓:匿名使用者 π是無理數,不是有理數。 π的無理性可以通過嚴格的數學證明來證明 假設π是有理數,則π=a/b,(a,b為自然數) 令f(x)=(x^n)[(a-bx)^n]/(n!) 若0 0 0 以上兩式相乘得: 0 當n充分大時,,在[0,π]區間上的積分有 0<∫f(x)sinxdx <[π^(n+1)](a^n)/(n!)<1 …………(1) 又令:f(x)=f(x)-f"(x)+[f(x)]^(4)-…+[(-1)^n][f(x)]^(2n),(表示偶數階導數) 由於n!f(x)是x的整係數多項式,且各項的次數都不小於n,故f(x)及其各階導數在x=0點處的值也都是整數,因此,f(x)和f(π)也都是整數。 又因為d[f'(x)sinx-f(x)conx]/dx =f"(x)sinx+f'(x)cosx-f'(x)cosx+f(x)sinx =f"(x)sinx+f(x)sinx =f(x)sinx 所以有: ∫f(x)sinxdx=[f'(x)sinx-f(x)cosx],(此處上限為π,下限為0) =f(π)+f(0) 上式表示∫f(x)sinxdx在[0,π]區間上的積分為整數,這與(1)式矛盾。 所以π不是有理數,又它是實數,故π是無理數。 15樓:牛信從戊 不是,有理數是指有限的或無限但迴圈的,π不是分數,無限不迴圈小數不是分數。 16樓:夐遠逍遙 不是,有理數的定義是無限不迴圈小數和開根開不盡的數叫無理數 整數和分數統稱為有理數 包括整數和通常所說的分數,此分數亦可表示為有限小數或無限迴圈小數。 這一定義在數的十進位制和其他進位制(如二進位制)下都適用。 數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογος ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。 所有有理數的集合表示為 q,有理數的小數部分有限或為迴圈。 有理數分為整數和分數 整數又分為正整數、負整數和0 分數又分為正分數、負分數 正整數和0又被稱為自然數 如3,-98.11,5.72727272……,7/22都是有理數。 有理數還可以劃分為正整數、負整數、正分數、負分數和0。 全體有理數構成一個集合,即有理數集,用粗體字母q表示,較現代的一些數學書則用空心字母q表示。 有理數集是實數集的子集。相關的內容見數系的擴張。 有理數集是一個域,即在其中可進行四則運算(0作除數除外),而且對於這些運算,以下的運算律成立(a、b、c等都表示任意的有理數): ①加法的交換律 a+b=b+a; ②加法的結合律 a+(b+c)=(a+b)+c; ③存在數0,使 0+a=a+0=a; ④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0; ⑤乘法的交換律 ab=ba; ⑥乘法的結合律 a(bc)=(ab)c; ⑦分配律 a(b+c)=ab+ac; ⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a; ⑨對於不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。 ⑩0a=0 此外,有理數是一個序域,即在其上存在一個次序關係≤。 有理數還是一個阿基米德域,即對有理數a和b,a≥0,b>0,必可找到一個自然數n,使nb>a。由此不難推知,不存在最大的有理數。 值得一提的是有理數的名稱。「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。 有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。但是,這個詞**於古希臘,其英文詞根為ratio,就是比率的意思(這裡的詞根是英語中的,希臘語意義與之相同)。 所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。 有理數加減混合運算 1.理數加減統一成加法的意義: 對於加減混合運算中的減法,我們可以根據有理數減法法則將減法轉化為加法,這樣就可將混合運算統一為加法運算,統一後的式子是幾個正數或負數的和的形式,我們把這樣的式子叫做代數和。 2.有理數加減混合運算的方法和步驟: (1)運用減法法則將有理數混合運算中的減法轉化為加法。 (2)運用加法法則,加法交換律,加法結合律簡便運算。 有理數範圍內已有的絕對值,相反數等概念,在實數範圍內有同樣的意義。 一般情況下,有理數是這樣分類的: 整數、分數;正數、負數和零;負有理數,非負有理數 不對,還有零。有理數包括正有理數,負有理數和零。你好,嚴格說不對,還有0啊 正有理數和負有理數統稱有理數是對的嗎 正有理數和負有理數統稱有理數是不對的,還有0。有理數為整數 正整數 62616964757a686964616fe4b893e5b19e313333663064640 負整數 和分數的統... 無理數,因為不迴圈小數是無理數 你對課本提出疑問是好的,但那麼多代學下來都沒人提出錯誤,你是不是有點雞蛋裡挑骨頭啊?誰告訴你分子分母不是無理數了呢?圓的周長與直徑必然有一個是無理數 不對 4 1 1 3 1 5 1 7 1 9 1 11 這是萊布尼茲公式 如果 是有理數,設 p q p,q均為整數且... 有理數是整數和分數的統稱,一切有理數都可以 化成分數的形式。1.正數和負數 我們知道,數學中已經認識的數都是從社會實踐活動中抽象出來的。在小學階段學習的正整數,正分數和零都是表示某種量的多少。正數和負數的引入,是因為在實際生活中存在大量具有相反意義的量,它用小學學過的數,不能明確表示其相反的情況。例...有理數包括正有理數和負有理數,對嗎
圓周率是有理數不是!無理數, 是不是有理數 為什麼
有理數的意義,有理數的意義是什麼