1樓:是你找到了我
二重積分被積函式等於1時,可以直接表示區域面積;是被積函式是1的時回候。因為二重積答分的面積微元dxdy就表示積分割槽域微元的面積,所以被積函式為1時,直接積分就得到總的面積。
二重積分的本質是求曲頂柱體體積。重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。
當被積函式大於零時,二重積分是柱體的體積;當被積函式小於零時,二重積分是柱體體積負值。
2樓:匿名使用者
是的,二重積分被積函式等於1時,可以直接表示區域面積。
雖然還有其它情況二重積分值也可能會等於區域面積,但這不過是一種計算結果,而不能【直接】表示。
3樓:花開勿敗的雨季
因為二重來積分的面積微自元dxdy就表示積分割槽bai域微元的面積,那du麼直接積分就得到總的面zhi積dao,所以被積函式即為1.
類似地,一重定積分的微元為座標長度dx,為了求面積,還需要知道矩形微元的高,即f(x),所以定積分求面積的被積函式是f(x)。
4樓:匿名使用者
當積分割槽域d是平面區域時,∫∫dxdy=d的面積。
5樓:匿名使用者
∫∫ k ds = k ∫∫ ds = ks
6樓:霖鎅
被積函式是1 的話 是f(x,y)=1→z=1 相當於高等於1
二重積分被積函式是1為什麼代表求積分割槽域面積
7樓:匿名使用者
你要從二重積分積分的意義和本質上理解較為簡單。
給你個對二重積分本質的比較形象的理解,就是要充分理解這張圖。
向左轉|向右轉
z=f(x,y)就是積分函式,他是個由x,y共同決定的算式。
積分的過程就是:
把xoy這個平面,無限的分成一堆小區域(你可以理解為一堆小圓圈或者小方格),把每個小區域的面積,乘以這個小區域對應的f(x,y)。最後把這些值都加起來。
如果f(x,y)是個常數k呢,那麼結果就是:每個小區域的面積都乘以這個不變的常數,然後把他們加起來。這樣我們就可以把這個常數k提出來。
積分結果為:常數k*所有小面積的加和。
因為所有小面積的加和就是整個積分割槽域的面積,所以,積分結果就為:
整個積分割槽域面積的k倍。(你之前的描述是不準確的)
其實就是一個以整個積分割槽域為橫截面,高度為k的一個柱體的體積。(注意,從意義上說,二重積分積出來的都是體積,不是面積,只不過柱體的體積就等於面積的k倍)
這樣應該可以讓你從本質上,直觀的理解二重積分,也就知道了你問的那個問題了。
8樓:匿名使用者
二重積分的幾何意義一般
表示幾何圖形的體積 如果被積函式為1 那麼它所表示的為 以區域d為地面積 以高為1的幾何圖形的體積。體積在數值上等於區域d的表面積。所以當二重積分被積函式是1代表求積分割槽域面積
舉例 地面積為4 高為1的長方體 體積為4 在數值上等於底面積
9樓:路長順毋橋
積分割槽域不是積分面積。積分割槽域是指,x和y的範圍。但是二重積分求的是z。
由x和y共同決定的z。
二重積分積出來是體積。一重積分積出來才是面積。三重四重的看具體題目吧。至少在二維和三維座標表示不出來。
這樣說吧,比如一個柱形體,內部密度具有和幾何位置相關的密度函式(即每一點密度不是均等的,而是隨函式變化的)。那麼就要用到三重積分求重量了。明白啵?
為什麼二重積分的被積函式為常數時,代表的是積分割槽域的面積
10樓:扯淡的哲人
你要從二重積分積分的意義和本質
上理解較為簡單。
給你個對二重積分本質的比較形象的理解,就是要充分理解這張圖。
z=f(x,y)就是積分函式,他是個由x,y共同決定的算式。
積分的過程就是:
把xoy這個平面,無限的分成一堆小區域(你可以理解為一堆小圓圈或者小方格),把每個小區域的面積,乘以這個小區域對應的f(x,y)。最後把這些值都加起來。
如果f(x,y)是個常數k呢,那麼結果就是:每個小區域的面積都乘以這個不變的常數,然後把他們加起來。這樣我們就可以把這個常數k提出來。
積分結果為:常數k*所有小面積的加和。
因為所有小面積的加和就是整個積分割槽域的面積,所以,積分結果就為:
整個積分割槽域面積的k倍。(你之前的描述是不準確的)
其實就是一個以整個積分割槽域為橫截面,高度為k的一個柱體的體積。(注意,從意義上說,二重積分積出來的都是體積,不是面積,只不過柱體的體積就等於面積的k倍)
這樣應該可以讓你從本質上,直觀的理解二重積分,也就知道了你問的那個問題了。
還有什麼想問的都可以追問,如果幫到您,敬請採納,謝謝~
11樓:華華華華華爾茲
二重積分的被積函式為常數時,代表的是積分割槽域的面積,這句話是不對的。
1、因為是常數,既然是常數,就可以提取到積分符號外面;
2、一旦提取到積分符號外,那積分符號下的dxdy就是一個微元面積,整個區域的積分就是總面積。
3、由於積分符號外有一個常數,當初積分符號下的常數,可能是沒有單位的 單純的數學常數,這個常數乘以dxdy,其意義就是面積的倍數。
4、假如x、y不是真正的座標,而是抽象的變數,那 z = constant 可能是:等溫過程、等壓過程、等容過程。
5、假如x、y是真正的座標,也容易理解,這個 z = constant。 在數學上,這就是一個identity,就是一個恆等式。 例如 sin²x + cos²x = 1,這個恆等式跟x的取值無關; 又如 arcsin(x+y) + arccos(x+y) = ½π,
這個恆等式跟x、y的取值無關可能是指:在物理上,這就是一個conservation,是一個守恆定律。
例如:不考慮勢能時,有動能定理。同樣不考慮動能時,也可以全用勢能表示,當然是在保守系中才行。
擴充套件資料:
幾何意義:在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。
例如二重積分
其中表示的是以上半球面為頂,半徑為a的圓為底面的一個曲頂柱體,這個二重積分即為半球體的體積
數值意義:二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。如函式:
其積分割槽域d是由
所圍成的區域。
其中二重積分是一個常數,不妨設它為a。對等式兩端對d這個積分割槽域作二重定積分。
故這個函式的具體表示式為:f(x,y)=xy+1/8,等式的右邊就是二重積分數值為a,而等式最左邊根據性質5,可化為常數a乘上積分割槽域的面積1/3,將含有二重積分的等式可化為未知數a來求解。
二重積分什麼情況下要分割槽域積分,二重積分的區域D怎麼劃分
1 二重積源分 double integral 是一個原則性 原理性的說法,具體積分的過程,必須化成二次積分 iterated integral。2 化成二次積分後,它就是兩次定積分的過程 第一次的積分,一般是從函式積分到函式 也會有從一個值積分到一個函式,或從一個值積分到另一個值。第二次的積分,肯...
計算二重積分D e x dxdy,其中D區域表示X 1,Y X,Y 0所圍區域
二重積分,最主要的先是根據積分割槽域確定積分型別,此題可選x型 計算二重積分 e x y dxdy,其中區域d是由x 0,x 1,y 0,y 1所圍成的矩形 e x y dxdy e x y dx dy e x y dx 0 1 e x y 0 1 0 1 0 1 e 1 y e y e 1 e y...
二重積分是否在開區域可以進行計算
可以的。積分去掉有限個點,結果還是一樣的。開區間相當於去掉端點。結果是一樣的。二重積分雖然去掉的可能是無限點,不過就面的概念而言,邊界也算是有限的。二重積分,積分割槽域為0,可以計算嗎?1 只要積分割槽域中 來每一點都滿足某個自表示式,這bai 個表示式就可以先du代入被積函式。zhi由於曲面上每一...