計算二重積分D (x 2 y 2)d,其中D是矩形閉區域 x 1,y 1。如圖

2021-03-27 08:23:40 字數 2867 閱讀 1674

1樓:阮皓君及曲

^這題沒什麼特殊限制,可以直接轉化為累次積分!

∫-1,1∫-1,1(x^2+y^2)dxdy=∫-1,1[(1/3)x^3+y^2x)|-1,1dy=∫-1,1(2/3+2y^2)dy=4/3+8/3=4若有疑問可以追問!望採納!尊重他人勞動!謝謝!

計算二重積分∫∫(d)(x^2+y^2)dσ,其中d是矩形閉區域:|x|≤1,|y|≤1

2樓:巴山蜀水

解:原式=∫(-1,1)dx∫(-1,1)(x²+y²)dy。

而,∫(-1,1)(x²+y²)dy=(x²y+y³/3)丨(y=-1,1)=2(x²+1/3),

∴原式=2∫(-1,1)(x²+1/3)dx=8/3。

供參考。

3樓:鮑飛讓千山

^這題沒什麼特殊限制,可以直接轉化為累次積分!

∫-1,1∫-1,1(x^2+y^2)dxdy=∫-1,1[(1/3)x^3+y^2x)|-1,1dy=∫-1,1(2/3+2y^2)dy=4/3+8/3=4若有疑問可以追問!望採納!尊重他人勞動!謝謝!

計算二重積分∫∫(d)(x^2+y^2)dσ,其中d是矩形閉區域:|x|≤1,|y|≤1 求完整過程

4樓:匿名使用者

|這題沒什麼特殊限制,可以直接轉化為累次積分! ∫-1,1∫-1,1(x^2+y^2)dxdy =∫-1,1[(1/3)x^3+y^2x)|-1,1dy = ∫-1,1(2/3+2y^2)dy=4/3+8/3=4 若有疑問可以追問!!尊重他人勞動!謝謝!

5樓:匿名使用者

解:原式=∫<0,1>dx∫<0,1>(x^2+y^2)dy=∫<0,1>(x^2+1/3)dx

=1/3+1/3

=2/3。

計算二重積分∫∫(d)(x^2 y^2)dσ,其中d是矩形閉區域:|x|≤1,|y|≤1 求完整過程

6樓:匿名使用者

解:原式=∫<0,1>dx∫<0,1>(x^2+y^2)dy=∫<0,1>(x^2+1/3)dx

=1/3+1/3

=2/3。

計算二重積分∫∫(d)(x^2+y^2)dσ,其中d是環形閉區域:a^2≤x^2+y^2≤b^2

7樓:匿名使用者

上極座標

原積分=∫∫r^2 rdrdθ

=∫(0->2π)dθ ∫(a->b) r^3dr=(b^4-a^4)π/2

二重積分∫∫xy(x+y)dδ,其中d是矩形閉區域:0≤x≤1,0≤y≤1

8樓:西域牛仔王

由對稱性,原式=2∫(0,1)x²dx∫(0,1)ydy

=2*(1/3)*(1/2)

=1/3

9樓:雨易獨孤

這是估計二重積分的值

所以先畫出d的區域圖

找最大值x,y與最小值x,y

帶入最大值最小值得

0

已知計算二重積分∫∫(x^2+y^2-x)dσ,其中d是由直線y=2,y=x及y=2x所圍成的閉區

10樓:g笑九吖

^積分割槽域為:0《x《1,0《y《x^2

∫∫(x^2+y^2)dσ

=∫(0,1)dx∫(0,x^2)(x^2+y^2)dy=∫(0,1)[x^2y+y^3/3)|(0,x^2)]dx=∫(0,1)[x^4+x^6/3)dx

=(1/5)+(1/21)

=26/105

11樓:匿名使用者

由題意可得出:y/2 ≤ x ≤ y,0 ≤ y≤ 2因此:∫∫(x²+y²-x)dx dy

=∫dy∫(x²+y²-x)dx

=∫dy[1/3x³+xy²-1/2x²] |(y/2,y)=∫[-((3y²)/8) +(19y³)/24]dy=13/6

擴充套件資料:二重積分的計算一般要化成累次積分來計算;做題時要會利用積分割槽域的對稱性;會利於被積函式的奇偶性;要會交換座標系。

二重積分求極限時,積分割槽域的分塊不是一個簡單的程式,當其中的每一塊的直徑都是無窮小時,意味著每一小塊都縮成一點,此時每一小塊中任選的一點幾乎就是積分割槽域d中的任一點。

12樓:匿名使用者

那就需要分成兩塊來列式,參考下圖:

13樓:蟲師小王子

上面的已經解答清楚了,我來說為什麼分兩部分。

因為(0,1)與(1,2)區間時不一樣,一個是y=x,另一個是y=2

計算二重積分∫∫d(x^2+y^2-x)dxdy,其中d由x=2,y=2x,y=x圍城的閉區域?

14樓:匿名使用者

^∫∫(x^2+y^2-x)dxdy

= ∫<0, 2>dx∫(x^2+y^2-x)dy= ∫<0, 2>dx[(x^2+x)y+y^3/3]= ∫<0, 2>[(10/3)x^3+x^2]dx= [(5/6)x^4+x^3/3]<0, 2> = 6

15樓:

|d是x型區域:0≤x≤2,x≤y≤2x

∫∫(x²+y²-x)dxdy

=∫(0,2)dx∫(x,2x)(x²+y²-x)dy=∫(0,2)(x²y-xy+y³/3)|(x,2x)dx=∫(0,2)(14x³/3-2x²-4x³/3+x²)dx=∫(0,2)(10x³/3-x²)dx

=(5x^4/6-x³/3)|(0,2)

=40/3-8/3

=32/3

計算二重積分D)ydxdy,其中D x 2 y

變成極 bai座標啊 令x pcosa y psina 代入x du2 y 2 2x p 2 2pcosa p 2cosa 由於zhiy 0,所以0 a dao 回 答d ydxdy 0,0,2cosa psina pdpda 0,sina p 3 3 0,2cosa da 8 3 0,sina c...

計算二重積分Dx2 y2dxdy,其中積分割槽域D是由直線x 1,y 0及曲線y 2 x2在第一象限內圍成的區域

積分割槽域如下圖 因為 y2 xy 是關於x的一次函式,從而,為計算簡單起見,將積分轉化為 先x後y 的累次積分 所以,i dy xydxdy 10 dy y0 y?xy dx 23 101y y?xy 32 ydy 23 10ydy 29 計算二重積分 y 2dxdy,其中d是由圓周x 2 y 2...

計算二重積分DR2x2y2d其中D由x2y

x cos y sin y x sin cos tan 1 4 已知計算二重積分 x 2 y 2 x d 其中d是由直線y 2,y x及y 2x所圍成的閉區 積分割槽域為 0 x 1,0 y x 2 x 2 y 2 d 0,1 dx 0,x 2 x 2 y 2 dy 0,1 x 2y y 3 3 0...