1樓:阮皓君及曲
^這題沒什麼特殊限制,可以直接轉化為累次積分!
∫-1,1∫-1,1(x^2+y^2)dxdy=∫-1,1[(1/3)x^3+y^2x)|-1,1dy=∫-1,1(2/3+2y^2)dy=4/3+8/3=4若有疑問可以追問!望採納!尊重他人勞動!謝謝!
計算二重積分∫∫(d)(x^2+y^2)dσ,其中d是矩形閉區域:|x|≤1,|y|≤1
2樓:巴山蜀水
解:原式=∫(-1,1)dx∫(-1,1)(x²+y²)dy。
而,∫(-1,1)(x²+y²)dy=(x²y+y³/3)丨(y=-1,1)=2(x²+1/3),
∴原式=2∫(-1,1)(x²+1/3)dx=8/3。
供參考。
3樓:鮑飛讓千山
^這題沒什麼特殊限制,可以直接轉化為累次積分!
∫-1,1∫-1,1(x^2+y^2)dxdy=∫-1,1[(1/3)x^3+y^2x)|-1,1dy=∫-1,1(2/3+2y^2)dy=4/3+8/3=4若有疑問可以追問!望採納!尊重他人勞動!謝謝!
計算二重積分∫∫(d)(x^2+y^2)dσ,其中d是矩形閉區域:|x|≤1,|y|≤1 求完整過程
4樓:匿名使用者
|這題沒什麼特殊限制,可以直接轉化為累次積分! ∫-1,1∫-1,1(x^2+y^2)dxdy =∫-1,1[(1/3)x^3+y^2x)|-1,1dy = ∫-1,1(2/3+2y^2)dy=4/3+8/3=4 若有疑問可以追問!!尊重他人勞動!謝謝!
5樓:匿名使用者
解:原式=∫<0,1>dx∫<0,1>(x^2+y^2)dy=∫<0,1>(x^2+1/3)dx
=1/3+1/3
=2/3。
計算二重積分∫∫(d)(x^2 y^2)dσ,其中d是矩形閉區域:|x|≤1,|y|≤1 求完整過程
6樓:匿名使用者
解:原式=∫<0,1>dx∫<0,1>(x^2+y^2)dy=∫<0,1>(x^2+1/3)dx
=1/3+1/3
=2/3。
計算二重積分∫∫(d)(x^2+y^2)dσ,其中d是環形閉區域:a^2≤x^2+y^2≤b^2
7樓:匿名使用者
上極座標
原積分=∫∫r^2 rdrdθ
=∫(0->2π)dθ ∫(a->b) r^3dr=(b^4-a^4)π/2
二重積分∫∫xy(x+y)dδ,其中d是矩形閉區域:0≤x≤1,0≤y≤1
8樓:西域牛仔王
由對稱性,原式=2∫(0,1)x²dx∫(0,1)ydy
=2*(1/3)*(1/2)
=1/3
9樓:雨易獨孤
這是估計二重積分的值
所以先畫出d的區域圖
找最大值x,y與最小值x,y
帶入最大值最小值得
0
已知計算二重積分∫∫(x^2+y^2-x)dσ,其中d是由直線y=2,y=x及y=2x所圍成的閉區
10樓:g笑九吖
^積分割槽域為:0《x《1,0《y《x^2
∫∫(x^2+y^2)dσ
=∫(0,1)dx∫(0,x^2)(x^2+y^2)dy=∫(0,1)[x^2y+y^3/3)|(0,x^2)]dx=∫(0,1)[x^4+x^6/3)dx
=(1/5)+(1/21)
=26/105
11樓:匿名使用者
由題意可得出:y/2 ≤ x ≤ y,0 ≤ y≤ 2因此:∫∫(x²+y²-x)dx dy
=∫dy∫(x²+y²-x)dx
=∫dy[1/3x³+xy²-1/2x²] |(y/2,y)=∫[-((3y²)/8) +(19y³)/24]dy=13/6
擴充套件資料:二重積分的計算一般要化成累次積分來計算;做題時要會利用積分割槽域的對稱性;會利於被積函式的奇偶性;要會交換座標系。
二重積分求極限時,積分割槽域的分塊不是一個簡單的程式,當其中的每一塊的直徑都是無窮小時,意味著每一小塊都縮成一點,此時每一小塊中任選的一點幾乎就是積分割槽域d中的任一點。
12樓:匿名使用者
那就需要分成兩塊來列式,參考下圖:
13樓:蟲師小王子
上面的已經解答清楚了,我來說為什麼分兩部分。
因為(0,1)與(1,2)區間時不一樣,一個是y=x,另一個是y=2
計算二重積分∫∫d(x^2+y^2-x)dxdy,其中d由x=2,y=2x,y=x圍城的閉區域?
14樓:匿名使用者
^∫∫(x^2+y^2-x)dxdy
= ∫<0, 2>dx∫(x^2+y^2-x)dy= ∫<0, 2>dx[(x^2+x)y+y^3/3]= ∫<0, 2>[(10/3)x^3+x^2]dx= [(5/6)x^4+x^3/3]<0, 2> = 6
15樓:
|d是x型區域:0≤x≤2,x≤y≤2x
∫∫(x²+y²-x)dxdy
=∫(0,2)dx∫(x,2x)(x²+y²-x)dy=∫(0,2)(x²y-xy+y³/3)|(x,2x)dx=∫(0,2)(14x³/3-2x²-4x³/3+x²)dx=∫(0,2)(10x³/3-x²)dx
=(5x^4/6-x³/3)|(0,2)
=40/3-8/3
=32/3
計算二重積分D)ydxdy,其中D x 2 y
變成極 bai座標啊 令x pcosa y psina 代入x du2 y 2 2x p 2 2pcosa p 2cosa 由於zhiy 0,所以0 a dao 回 答d ydxdy 0,0,2cosa psina pdpda 0,sina p 3 3 0,2cosa da 8 3 0,sina c...
計算二重積分Dx2 y2dxdy,其中積分割槽域D是由直線x 1,y 0及曲線y 2 x2在第一象限內圍成的區域
積分割槽域如下圖 因為 y2 xy 是關於x的一次函式,從而,為計算簡單起見,將積分轉化為 先x後y 的累次積分 所以,i dy xydxdy 10 dy y0 y?xy dx 23 101y y?xy 32 ydy 23 10ydy 29 計算二重積分 y 2dxdy,其中d是由圓周x 2 y 2...
計算二重積分DR2x2y2d其中D由x2y
x cos y sin y x sin cos tan 1 4 已知計算二重積分 x 2 y 2 x d 其中d是由直線y 2,y x及y 2x所圍成的閉區 積分割槽域為 0 x 1,0 y x 2 x 2 y 2 d 0,1 dx 0,x 2 x 2 y 2 dy 0,1 x 2y y 3 3 0...